factorization algebras
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 7)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Kevin Costello ◽  
Owen Gwilliam

Factorization algebras are local-to-global objects that play a role in classical and quantum field theory that is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this second volume, the authors show how factorization algebras arise from interacting field theories, both classical and quantum, and how they encode essential information such as operator product expansions, Noether currents, and anomalies. Along with a systematic reworking of the Batalin–Vilkovisky formalism via derived geometry and factorization algebras, this book offers concrete examples from physics, ranging from angular momentum and Virasoro symmetries to a five-dimensional gauge theory.


2020 ◽  
Vol 373 (1) ◽  
pp. 107-174 ◽  
Author(s):  
Owen Gwilliam ◽  
Kasia Rejzner

AbstractIn this paper we relate two mathematical frameworks that make perturbative quantum field theory rigorous: perturbative algebraic quantum field theory (pAQFT) and the factorization algebras framework developed by Costello and Gwilliam. To make the comparison as explicit as possible, we use the free scalar field as our running example, while giving proofs that apply to any field theory whose equations of motion are Green-hyperbolic (which includes, for instance, free fermions). The main claim is that for such free theories, there is a natural transformation intertwining the two constructions. In fact, both approaches encode equivalent information if one assumes the time-slice axiom. The key technical ingredient is to use time-ordered products as an intermediate step between a net of associative algebras and a factorization algebra.


Sign in / Sign up

Export Citation Format

Share Document