scholarly journals MMAP: a cloud computing platform for mining the maximum accuracy of predicting phenotypes from genotypes

Author(s):  
Wei Huang ◽  
Ping Zheng ◽  
Zhenhai Cui ◽  
Zhuo Li ◽  
Yifeng Gao ◽  
...  

  Accurately predicting phenotypes from genotypes holds great promise to improve health management in humans and animals, and breeding efficiency in animals and plants. Although many prediction methods have been developed, the optimal method differs across datasets due to multiple factors, including species, environments, populations and traits of interest. Studies have demonstrated that the number of genes underlying a trait and its heritability are the two key factors that determine which method fits the trait the best. In many cases, however, these two factors are unknown for the traits of interest. We developed a cloud computing platform for Mining the Maximum Accuracy of Predicting phenotypes from genotypes (MMAP) using unsupervised learning on publicly available real data and simulated data. MMAP provides a user interface to upload input data, manage projects and analyses and download the output results. The platform is free for the public to conduct computations for predicting phenotypes and genetic merit using the best prediction method optimized from many available ones, including Ridge Regression, gBLUP, compressed BLUP, Bayesian LASSO, Bayes A, B, Cpi and many more. Users can also use the platform to conduct data analyses with any methods of their choice. It is expected that extensive usage of MMAP would enrich the training data, which in turn results in continual improvement of the identification of the best method for use with particular traits. Availability and implementation The MMAP user manual, tutorials and example datasets are available at http://zzlab.net/MMAP. Supplementary information Supplementary data are available at Bioinformatics online.

2012 ◽  
Vol 35 (6) ◽  
pp. 1262 ◽  
Author(s):  
Ke-Jiang YE ◽  
Zhao-Hui WU ◽  
Xiao-Hong JIANG ◽  
Qin-Ming HE

2020 ◽  
Vol 29 (2) ◽  
pp. 1-24
Author(s):  
Yangguang Li ◽  
Zhen Ming (Jack) Jiang ◽  
Heng Li ◽  
Ahmed E. Hassan ◽  
Cheng He ◽  
...  

Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Michael Hanke ◽  
Franco Pestilli ◽  
Adina S. Wagner ◽  
Christopher J. Markiewicz ◽  
Jean-Baptiste Poline ◽  
...  

Abstract Decentralized research data management (dRDM) systems handle digital research objects across participating nodes without critically relying on central services. We present four perspectives in defense of dRDM, illustrating that, in contrast to centralized or federated research data management solutions, a dRDM system based on heterogeneous but interoperable components can offer a sustainable, resilient, inclusive, and adaptive infrastructure for scientific stakeholders: An individual scientist or laboratory, a research institute, a domain data archive or cloud computing platform, and a collaborative multisite consortium. All perspectives share the use of a common, self-contained, portable data structure as an abstraction from current technology and service choices. In conjunction, the four perspectives review how varying requirements of independent scientific stakeholders can be addressed by a scalable, uniform dRDM solution and present a working system as an exemplary implementation.


Author(s):  
Zijiang Hao ◽  
Yutao Tang ◽  
Yifan Zhang ◽  
Ed Novak ◽  
Nancy Carter ◽  
...  

2016 ◽  
Vol 18 (5) ◽  
pp. 68-77 ◽  
Author(s):  
Cole Freniere ◽  
Ashish Pathak ◽  
Mehdi Raessi ◽  
Gaurav Khanna

Sign in / Sign up

Export Citation Format

Share Document