ACM Transactions on Software Engineering and Methodology
Latest Publications


TOTAL DOCUMENTS

615
(FIVE YEARS 185)

H-INDEX

74
(FIVE YEARS 12)

Published By Association For Computing Machinery

1049-331x

2022 ◽  
Vol 31 (2) ◽  
pp. 1-71
Author(s):  
K. Lano ◽  
S. Kolahdouz-Rahimi ◽  
S. Fang

In this article, we address how the production of model transformations (MT) can be accelerated by automation of transformation synthesis from requirements, examples, and metamodels. We introduce a synthesis process based on metamodel matching, correspondence patterns between metamodels, and completeness and consistency analysis of matches. We describe how the limitations of metamodel matching can be addressed by combining matching with automated requirements analysis and model transformation by example (MTBE) techniques. We show that in practical examples a large percentage of required transformation functionality can usually be constructed automatically, thus potentially reducing development effort. We also evaluate the efficiency of synthesised transformations. Our novel contributions are: The concept of correspondence patterns between metamodels of a transformation. Requirements analysis of transformations using natural language processing (NLP) and machine learning (ML). Symbolic MTBE using “predictive specification” to infer transformations from examples. Transformation generation in multiple MT languages and in Java, from an abstract intermediate language.


2022 ◽  
Vol 31 (2) ◽  
pp. 1-32
Author(s):  
Luca Ardito ◽  
Andrea Bottino ◽  
Riccardo Coppola ◽  
Fabrizio Lamberti ◽  
Francesco Manigrasso ◽  
...  

In automated Visual GUI Testing (VGT) for Android devices, the available tools often suffer from low robustness to mobile fragmentation, leading to incorrect results when running the same tests on different devices. To soften these issues, we evaluate two feature matching-based approaches for widget detection in VGT scripts, which use, respectively, the complete full-screen snapshot of the application ( Fullscreen ) and the cropped images of its widgets ( Cropped ) as visual locators to match on emulated devices. Our analysis includes validating the portability of different feature-based visual locators over various apps and devices and evaluating their robustness in terms of cross-device portability and correctly executed interactions. We assessed our results through a comparison with two state-of-the-art tools, EyeAutomate and Sikuli. Despite a limited increase in the computational burden, our Fullscreen approach outperformed state-of-the-art tools in terms of correctly identified locators across a wide range of devices and led to a 30% increase in passing tests. Our work shows that VGT tools’ dependability can be improved by bridging the testing and computer vision communities. This connection enables the design of algorithms targeted to domain-specific needs and thus inherently more usable and robust.


2022 ◽  
Vol 31 (2) ◽  
pp. 1-50
Author(s):  
Thomas Bock ◽  
Angelika Schmid ◽  
Sven Apel

Many open-source software projects depend on a few core developers, who take over both the bulk of coordination and programming tasks. They are supported by peripheral developers, who contribute either via discussions or programming tasks, often for a limited time. It is unclear what role these peripheral developers play in the programming and communication efforts, as well as the temporary task-related sub-groups in the projects. We mine code-repository data and mailing-list discussions to model the relationships and contributions of developers in a social network and devise a method to analyze the temporal collaboration structures in communication and programming, learning about the strength and stability of social sub-groups in open-source software projects. Our method uses multi-modal social networks on a series of time windows. Previous work has reduced the network structure representing developer collaboration to networks with only one type of interaction, which impedes the simultaneous analysis of more than one type of interaction. We use both communication and version-control data of open-source software projects and model different types of interaction over time. To demonstrate the practicability of our measurement and analysis method, we investigate 10 substantial and popular open-source software projects and show that, if sub-groups evolve, modeling these sub-groups helps predict the future evolution of interaction levels of programmers and groups of developers. Our method allows maintainers and other stakeholders of open-source software projects to assess instabilities and organizational changes in developer interaction and can be applied to different use cases in organizational analysis, such as understanding the dynamics of a specific incident or discussion.


2022 ◽  
Vol 31 (2) ◽  
pp. 1-30
Author(s):  
Fahimeh Ebrahimi ◽  
Miroslav Tushev ◽  
Anas Mahmoud

Modern application stores enable developers to classify their apps by choosing from a set of generic categories, or genres, such as health, games, and music. These categories are typically static—new categories do not necessarily emerge over time to reflect innovations in the mobile software landscape. With thousands of apps classified under each category, locating apps that match a specific consumer interest can be a challenging task. To overcome this challenge, in this article, we propose an automated approach for classifying mobile apps into more focused categories of functionally related application domains. Our aim is to enhance apps visibility and discoverability. Specifically, we employ word embeddings to generate numeric semantic representations of app descriptions. These representations are then classified to generate more cohesive categories of apps. Our empirical investigation is conducted using a dataset of 600 apps, sampled from the Education, Health&Fitness, and Medical categories of the Apple App Store. The results show that our classification algorithms achieve their best performance when app descriptions are vectorized using GloVe, a count-based model of word embeddings. Our findings are further validated using a dataset of Sharing Economy apps and the results are evaluated by 12 human subjects. The results show that GloVe combined with Support Vector Machines can produce app classifications that are aligned to a large extent with human-generated classifications.


2022 ◽  
Vol 31 (2) ◽  
pp. 1-25
Author(s):  
Ryan Williams ◽  
Tongwei Ren ◽  
Lorenzo De Carli ◽  
Long Lu ◽  
Gillian Smith

IoT firmware oftentimes incorporates third-party components, such as network-oriented middleware and media encoders/decoders. These components consist of large and mature codebases, shipping with a variety of non-critical features. Feature bloat increases code size, complicates auditing/debugging, and reduces stability. This is problematic for IoT devices, which are severely resource-constrained and must remain operational in the field for years. Unfortunately, identification and complete removal of code related to unwanted features requires familiarity with codebases of interest, cumbersome manual effort, and may introduce bugs. We address these difficulties by introducing PRAT, a system that takes as input the codebase of software of interest, identifies and maps features to code, presents this information to a human analyst, and removes all code belonging to unwanted features. PRAT solves the challenge of identifying feature-related code through a novel form of differential dynamic analysis and visualizes results as user-friendly feature graphs . Evaluation on diverse codebases shows superior code removal compared to both manual feature deactivation and state-of-art debloating tools, and generality across programming languages. Furthermore, a user study comparing PRAT to manual code analysis shows that it can significantly simplify the feature identification workflow.


2022 ◽  
Vol 31 (2) ◽  
pp. 1-23
Author(s):  
Luca Traini ◽  
Daniele Di Pompeo ◽  
Michele Tucci ◽  
Bin Lin ◽  
Simone Scalabrino ◽  
...  

Refactoring aims at improving the maintainability of source code without modifying its external behavior. Previous works proposed approaches to recommend refactoring solutions to software developers. The generation of the recommended solutions is guided by metrics acting as proxy for maintainability (e.g., number of code smells removed by the recommended solution). These approaches ignore the impact of the recommended refactorings on other non-functional requirements, such as performance, energy consumption, and so forth. Little is known about the impact of refactoring operations on non-functional requirements other than maintainability. We aim to fill this gap by presenting the largest study to date to investigate the impact of refactoring on software performance, in terms of execution time. We mined the change history of 20 systems that defined performance benchmarks in their repositories, with the goal of identifying commits in which developers implemented refactoring operations impacting code components that are exercised by the performance benchmarks. Through a quantitative and qualitative analysis, we show that refactoring operations can significantly impact the execution time. Indeed, none of the investigated refactoring types can be considered “safe” in ensuring no performance regression. Refactoring types aimed at decomposing complex code entities (e.g., Extract Class/Interface, Extract Method) have higher chances of triggering performance degradation, suggesting their careful consideration when refactoring performance-critical code.


2022 ◽  
Vol 31 (2) ◽  
pp. 1-23
Author(s):  
Jevgenija Pantiuchina ◽  
Bin Lin ◽  
Fiorella Zampetti ◽  
Massimiliano Di Penta ◽  
Michele Lanza ◽  
...  

Refactoring operations are behavior-preserving changes aimed at improving source code quality. While refactoring is largely considered a good practice, refactoring proposals in pull requests are often rejected after the code review. Understanding the reasons behind the rejection of refactoring contributions can shed light on how such contributions can be improved, essentially benefiting software quality. This article reports a study in which we manually coded rejection reasons inferred from 330 refactoring-related pull requests from 207 open-source Java projects. We surveyed 267 developers to assess their perceived prevalence of these identified rejection reasons, further complementing the reasons. Our study resulted in a comprehensive taxonomy consisting of 26 refactoring-related rejection reasons and 21 process-related rejection reasons. The taxonomy, accompanied with representative examples and highlighted implications, provides developers with valuable insights on how to ponder and polish their refactoring contributions, and indicates a number of directions researchers can pursue toward better refactoring recommenders.


2022 ◽  
Vol 31 (2) ◽  
pp. 1-34
Author(s):  
Patrick Keller ◽  
Abdoul Kader Kaboré ◽  
Laura Plein ◽  
Jacques Klein ◽  
Yves Le Traon ◽  
...  

Recent successes in training word embeddings for Natural Language Processing ( NLP ) tasks have encouraged a wave of research on representation learning for source code, which builds on similar NLP methods. The overall objective is then to produce code embeddings that capture the maximum of program semantics. State-of-the-art approaches invariably rely on a syntactic representation (i.e., raw lexical tokens, abstract syntax trees, or intermediate representation tokens) to generate embeddings, which are criticized in the literature as non-robust or non-generalizable. In this work, we investigate a novel embedding approach based on the intuition that source code has visual patterns of semantics. We further use these patterns to address the outstanding challenge of identifying semantic code clones. We propose the WySiWiM  ( ‘ ‘What You See Is What It Means ” ) approach where visual representations of source code are fed into powerful pre-trained image classification neural networks from the field of computer vision to benefit from the practical advantages of transfer learning. We evaluate the proposed embedding approach on the task of vulnerable code prediction in source code and on two variations of the task of semantic code clone identification: code clone detection (a binary classification problem), and code classification (a multi-classification problem). We show with experiments on the BigCloneBench (Java), Open Judge (C) that although simple, our WySiWiM  approach performs as effectively as state-of-the-art approaches such as ASTNN or TBCNN. We also showed with data from NVD and SARD that WySiWiM  representation can be used to learn a vulnerable code detector with reasonable performance (accuracy ∼90%). We further explore the influence of different steps in our approach, such as the choice of visual representations or the classification algorithm, to eventually discuss the promises and limitations of this research direction.


2022 ◽  
Vol 31 (2) ◽  
pp. 1-39
Author(s):  
Olawole Oni ◽  
Emmanuel Letier

Release planning—deciding what features to implement in upcoming releases of a software system—is a critical activity in iterative software development. Many release planning methods exist, but most ignore the inevitable uncertainty in estimating software development effort and business value. The article’s objective is to study whether analyzing uncertainty during release planning generates better release plans than if uncertainty is ignored. To study this question, we have developed a novel release planning method under uncertainty, called BEARS, that models uncertainty using Bayesian probability distributions and recommends release plans that maximize expected net present value and expected punctuality. We then compare release plans recommended by BEARS to those recommended by methods that ignore uncertainty on 32 release planning problems. The experiment shows that BEARS recommends release plans with higher expected net present value and expected punctuality than methods that ignore uncertainty, thereby indicating the harmful effects of ignoring uncertainty during release planning. These results highlight the importance of eliciting and analyzing uncertainty in software effort and value estimations and call for increased research in these areas.


2022 ◽  
Vol 31 (2) ◽  
pp. 1-37
Author(s):  
Denae Ford ◽  
Margaret-Anne Storey ◽  
Thomas Zimmermann ◽  
Christian Bird ◽  
Sonia Jaffe ◽  
...  

The COVID-19 pandemic has shaken the world to its core and has provoked an overnight exodus of developers who normally worked in an office setting to working from home. The magnitude of this shift and the factors that have accompanied this new unplanned work setting go beyond what the software engineering community has previously understood to be remote work. To find out how developers and their productivity were affected, we distributed two surveys (with a combined total of 3,634 responses that answered all required questions) weeks apart to understand the presence and prevalence of the benefits, challenges, and opportunities to improve this special circumstance of remote work. From our thematic qualitative analysis and statistical quantitative analysis, we find that there is a dichotomy of developer experiences influenced by many different factors (that for some are a benefit, while for others a challenge). For example, a benefit for some was being close to family members but for others having family members share their working space and interrupting their focus, was a challenge. Our surveys led to powerful narratives from respondents and revealed the scale at which these experiences exist to provide insights as to how the future of (pandemic) remote work can evolve.


Sign in / Sign up

Export Citation Format

Share Document