scholarly journals FRETraj: Integrating single-molecule spectroscopy with molecular dynamics

Author(s):  
Fabio D Steffen ◽  
Roland K O Sigel ◽  
Richard Börner

Abstract Summary Quantitative interpretation of single-molecule FRET experiments requires a model of the dye dynamics to link experimental energy transfer efficiencies to distances between atom positions. We have developed FRETraj, a Python module to predict FRET distributions based on accessible-contact volumes (ACV) and simulated photon statistics. FRETraj helps to identify optimal fluorophore positions on a biomolecule of interest by rapidly evaluating donor-acceptor distances. FRETraj is scalable and fully integrated into PyMOL and the Jupyter ecosystem. Here we describe the conformational dynamics of a DNA hairpin by computing multiple ACVs along a molecular dynamics trajectory and compare the predicted FRET distribution with single-molecule experiments. FRET-assisted modeling will accelerate the analysis of structural ensembles in particular dynamic, non-coding RNAs and transient protein-nucleic acid complexes. Availability FRETraj is implemented as a cross-platform Python package available under the GPL-3.0 on Github (https://github.com/RNA-FRETools/fretraj) and is documented at https://RNA-FRETools.github.io/fretraj Supplementary information Supplementary data are available at Bioinformatics online.

2013 ◽  
Vol 117 (50) ◽  
pp. 16105-16109 ◽  
Author(s):  
Roman Tsukanov ◽  
Toma E. Tomov ◽  
Yaron Berger ◽  
Miran Liber ◽  
Eyal Nir

2018 ◽  
Vol 37 (21) ◽  
Author(s):  
Florence Husada ◽  
Kiran Bountra ◽  
Konstantinos Tassis ◽  
Marijn Boer ◽  
Maria Romano ◽  
...  

2011 ◽  
Vol 100 (3) ◽  
pp. 474a-475a
Author(s):  
Markus Richert ◽  
Dymitro Rodnin ◽  
Carola S. Hengstenberg ◽  
Thomas Peulen ◽  
Alessandro Valeri ◽  
...  

2021 ◽  
Vol 20 ◽  
pp. S299-S300
Author(s):  
P. Liyanage ◽  
K. Mun ◽  
S. Yarlagadda ◽  
Y. Huang ◽  
A. Naren

2017 ◽  
Author(s):  
Mengyi Yang ◽  
Sijia Peng ◽  
Ruirui Sun ◽  
Jingdi Lin ◽  
Nan Wang ◽  
...  

SummaryOff-target binding and cleavage by Cas9 pose as major challenges in its applications. How conformational dynamics of Cas9 governs its nuclease activity under on- and off-target conditions remains largely unknown. Here, using intra-molecular single molecule fluorescence resonance energy transfer measurements, we revealed that Cas9 in apo, sgRNA-bound, and dsDNA/sgRNA-bound forms all spontaneously transits between three major conformational states, mainly reflecting significant conformational mobility of the catalytic HNH domain. We furthermore uncovered a surprising long-range allosteric communication between the HNH domain and RNA/DNA heteroduplex at the PAM-distal end to ensure correct positioning of the catalytic site, which demonstrated a unique proofreading mechanism served as the last checkpoint before DNA cleavage. Several Cas9 residues were likely to mediate the allosteric communication and proofreading step. Modulating interactions between Cas9 and heteroduplex at the distal end by introducing mutations on these sites provides an alternative route to improve and optimize the CRISPR/Cas9 toolbox.


2018 ◽  
Vol 47 (2) ◽  
pp. 981-996 ◽  
Author(s):  
Satyajit Patra ◽  
Vitor Schuabb ◽  
Irena Kiesel ◽  
Jim-Marcel Knop ◽  
Rosario Oliva ◽  
...  

2018 ◽  
Vol 207 ◽  
pp. 251-265
Author(s):  
Subhas C. Bera ◽  
Tapas Paul ◽  
A. N. Sekar Iyengar ◽  
Padmaja P. Mishra

We have investigated the isomerization dynamics and plausible energy landscape of 4-way Holliday junctions (4WHJs) bound to integration host factor (IHF, a DNA binding protein), considering the effect of applied external force, by single-molecule FRET methods.


Sign in / Sign up

Export Citation Format

Share Document