scholarly journals Robust reduced-rank regression

Biometrika ◽  
2017 ◽  
Vol 104 (3) ◽  
pp. 633-647 ◽  
Author(s):  
Y. She ◽  
K. Chen

Summary In high-dimensional multivariate regression problems, enforcing low rank in the coefficient matrix offers effective dimension reduction, which greatly facilitates parameter estimation and model interpretation. However, commonly used reduced-rank methods are sensitive to data corruption, as the low-rank dependence structure between response variables and predictors is easily distorted by outliers. We propose a robust reduced-rank regression approach for joint modelling and outlier detection. The problem is formulated as a regularized multivariate regression with a sparse mean-shift parameterization, which generalizes and unifies some popular robust multivariate methods. An efficient thresholding-based iterative procedure is developed for optimization. We show that the algorithm is guaranteed to converge and that the coordinatewise minimum point produced is statistically accurate under regularity conditions. Our theoretical investigations focus on non-asymptotic robust analysis, demonstrating that joint rank reduction and outlier detection leads to improved prediction accuracy. In particular, we show that redescending ψ-functions can essentially attain the minimax optimal error rate, and in some less challenging problems convex regularization guarantees the same low error rate. The performance of the proposed method is examined through simulation studies and real-data examples.

2021 ◽  
Vol 9 (3) ◽  
pp. 717-734
Author(s):  
Wilin Alvarez ◽  
Victor John Griffin

One of the challenges facing statisticians is to provide tools to enable researchers to interpret and present their data and conclusions in ways easily understood by the scientific community. One of the tools available for this purpose is a multivariate graphical representation called reduced rank regression biplot. This biplot describes how to construct a graphical representation in nonsymmetric contexts such as approximations by least squares in multivariate linear regression models of reduced rank. However multicollinearity invalidates the interpretation of a regression coefficient as the conditional effect of a regressor, given the values of the other regressors, and hence makes biplots of regression coefficients useless. So it was, in the search to overcome this problem, Alvarez and Griffin  presented a procedure for coefficient estimation in a multivariate regression model of reduced rank in the presence of multicollinearity based on PLS (Partial Least Squares) and generalized singular value decomposition. Based on these same procedures, a biplot construction is now presented for a multivariate regression model of reduced rank in the presence of multicollinearity. This procedure, called PLSSVD GH biplot, provides a useful data analysis tool which allows the visual appraisal of the structure of the dependent and independent variables. This paper defines the procedure and shows several of its properties. It also provides an implementation of the routines in R and presents a real life application involving data from the FAO food database to illustrate the procedure and its properties.


Author(s):  
Dmitry Kobak ◽  
Yves Bernaerts ◽  
Marissa A. Weis ◽  
Federico Scala ◽  
Andreas S. Tolias ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document