Patterns of Axon Collateralization of Identified Supragranular Pyramidal Neurons in the Cat Auditory Cortex

1991 ◽  
Vol 1 (1) ◽  
pp. 80-94 ◽  
Author(s):  
H. Ojima ◽  
C. N. Honda ◽  
E. Jones
2021 ◽  
Vol 15 ◽  
Author(s):  
Wenlu Pan ◽  
Jing Pan ◽  
Yan Zhao ◽  
Hongzheng Zhang ◽  
Jie Tang

Serotonin transporter (SERT) modulates the level of 5-HT and significantly affects the activity of serotonergic neurons in the central nervous system. The manipulation of SERT has lasting neurobiological and behavioral consequences, including developmental dysfunction, depression, and anxiety. Auditory disorders have been widely reported as the adverse events of these mental diseases. It is unclear how SERT impacts neuronal connections/interactions and what mechanism(s) may elicit the disruption of normal neural network functions in auditory cortex. In the present study, we report on the neuronal morphology and function of auditory cortex in SERT knockout (KO) mice. We show that the dendritic length of the fourth layer (L-IV) pyramidal neurons and the second-to-third layer (L-II/III) interneurons were reduced in the auditory cortex of the SERT KO mice. The number and density of dendritic spines of these neurons were significantly less than those of wild-type neurons. Also, the frequency-tonotopic organization of primary auditory cortex was disrupted in SERT KO mice. The auditory neurons of SERT KO mice exhibited border frequency tuning with high-intensity thresholds. These findings indicate that SERT plays a key role in development and functional maintenance of auditory cortical neurons. Auditory function should be examined when SERT is selected as a target in the treatment for psychiatric disorders.


Neuroscience ◽  
2016 ◽  
Vol 328 ◽  
pp. 157-164 ◽  
Author(s):  
Tina Gruene ◽  
Katelyn Flick ◽  
Sam Rendall ◽  
Jin Hyung Cho ◽  
Jesse Gray ◽  
...  

2018 ◽  
Vol 115 (37) ◽  
pp. 9306-9311 ◽  
Author(s):  
Cora Sau Wan Lai ◽  
Avital Adler ◽  
Wen-Biao Gan

Fear conditioning-induced behavioral responses can be extinguished after fear extinction. While fear extinction is generally thought to be a form of new learning, several lines of evidence suggest that neuronal changes associated with fear conditioning could be reversed after fear extinction. To better understand how fear conditioning and extinction modify synaptic circuits, we examined changes of postsynaptic dendritic spines of layer V pyramidal neurons in the mouse auditory cortex over time using transcranial two-photon microscopy. We found that auditory-cued fear conditioning induced the formation of new dendritic spines within 2 days. The survived new spines induced by fear conditioning with one auditory cue were clustered within dendritic branch segments and spatially segregated from new spines induced by fear conditioning with a different auditory cue. Importantly, fear extinction preferentially caused the elimination of newly formed spines induced by fear conditioning in an auditory cue-specific manner. Furthermore, after fear extinction, fear reconditioning induced reformation of new dendritic spines in close proximity to the sites of new spine formation induced by previous fear conditioning. These results show that fear conditioning, extinction, and reconditioning induce cue- and location-specific dendritic spine remodeling in the auditory cortex. They also suggest that changes of synaptic connections induced by fear conditioning are reversed after fear extinction.


2012 ◽  
Vol 107 (5) ◽  
pp. 1476-1488 ◽  
Author(s):  
Max L. Schiff ◽  
Alex D. Reyes

We use a combination of in vitro whole cell recordings and computer simulations to characterize the cellular and synaptic properties that contribute to processing of auditory stimuli. Using a mouse thalamocortical slice preparation, we record the intrinsic membrane properties and synaptic properties of layer 3/4 regular-spiking (RS) pyramidal neurons and fast-spiking (FS) interneurons in primary auditory cortex (AI). We find that postsynaptic potentials (PSPs) evoked in FS cells are significantly larger and depress more than those evoked in RS cells after thalamic stimulation. We use these data to construct a simple computational model of the auditory thalamocortical circuit and find that the differences between FS and RS cells observed in vitro generate model behavior similar to that observed in vivo. We examine how feedforward inhibition and synaptic depression affect cortical responses to time-varying inputs that mimic sinusoidal amplitude-modulated tones. In the model, the balance of cortical inhibition and thalamic excitation evolves in a manner that depends on modulation frequency (MF) of the stimulus and determines cortical response tuning.


Sign in / Sign up

Export Citation Format

Share Document