fear extinction
Recently Published Documents


TOTAL DOCUMENTS

843
(FIVE YEARS 259)

H-INDEX

80
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Grace C George ◽  
Sara A Heyn ◽  
Shuka Konishi ◽  
Marie-France Marin ◽  
Mohammed R Milad ◽  
...  

Children must learn basic functional processes directly from their caregivers and child psychopathology may disrupt this transmission. This transmission may be seen through biological measures like peripheral nervous system outputs like skin conductance (SCR). Fear learning deficits have been seen in affective disorders like PTSD and are useful for studying parent-child learning transmission. Our study uses a vicarious fear extinction paradigm to study if biological synchrony (SCR and heart rate variability (HRV)) are potential mechanisms in which children learn safety cues from their parents. There were 16 dyads (PTSD n=11, TD n=5) undergoing a vicarious fear extinction paradigm. We used cross-recurrence quantification analysis (CRQA) to assess SCR and HRV synchrony between parent-child dyads. We then used a linear model looking at group differences between PTSD dyads and typically developing (TD) dyads. For SCR, we saw a significant group difference (p=.037) indicating that TD dyads had higher SCR synchrony compared to PTSD dyads. For HRV, there were no group differences between PTSD and TD dyads (p=.325). These results suggest that SCR synchrony, but not HRV, may be a potential mechanism that allows for fear and safety learning in youth. While this is preliminary, it may give the first insights on how therapies such as Trauma-Focused Cognitive Behavioral Therapy critically rely on parental coaching to model appropriate fear responses to help their child to recover from trauma.


2021 ◽  
Vol 2 ◽  
Author(s):  
Jodie E. Pestana ◽  
Tayla B. McCutcheon ◽  
Sylvia K. Harmon-Jones ◽  
Rick Richardson ◽  
Bronwyn M. Graham

Reproductive experience leads to long-lasting changes in anxiety-like behaviour and fear extinction, the laboratory model of exposure therapy for anxiety disorders. For example, fear extinction is influenced by estrous cycle in nulliparous (no reproductive experience) female rats, but this effect is abolished in primiparous (one reproductive experience) females. It is unclear whether such changes are driven by pregnancy, maternal experience of caring for offspring during the postpartum period, or a combination of both experiences. The present study sought to determine the influence of maternal experience (i.e., exposure to pups and mother-pup interactions) on fear extinction in primiparous rats. In Experiment 1, we tested whether pup exposure is necessary to mitigate estrous effects on fear extinction in primiparous rats. Age-matched nulliparous rats, primiparous rats, and primiparous rats who experienced pregnancy but not pup exposure, underwent fear conditioning on day 1 (2 months post-parturition), extinction training during proestrus (high sex hormones) or metestrus (low sex hormones) on day 2, and extinction recall on day 3. Replicating past research, nulliparous rats showed impaired extinction recall when they were extinguished during metestrus compared to proestrus. In contrast, primiparous rats with and without pup exposure showed comparable extinction recall irrespective of estrous phase. In Experiment 2, we assessed whether naturally-occurring variation in mother-pup interactions predict future fear extinction performance and anxiety-like behaviour. During the first week of lactation, primiparous rats were measured for maternal behaviours toward pups. Primiparous rats were then tested on the light-dark box and elevated plus maze to measure anxiety-like behaviour and underwent a fear extinction protocol 1 month post-weaning. We found no significant correlations between maternal behaviour and fear extinction outcomes or anxiety-like behaviour. Our findings suggest that pregnancy, not maternal experience, mitigates the impact of estrous cycle on fear extinction. In addition, natural variation in maternal experience does not appear to contribute to variability in future fear extinction outcomes or anxiety-like behaviour in primiparous rats.


Author(s):  
Marc Ten-Blanco ◽  
África Flores ◽  
Inmaculada Pereda-Pérez ◽  
Fabiana Piscitelli ◽  
Cristina Izquierdo-Luengo ◽  
...  

Background and purpose: Anxiety is often characterized by an inability to extinguish learned fear responses. Orexins/hypocretins are involved in the modulation of aversive memories, and dysregulation of this system may contribute to the aetiology of anxiety disorders characterized by pathological fear. The mechanisms by which orexins regulate fear remain unknown. Experimental approach: We investigated the role of the endogenous cannabinoid system in the impaired fear extinction induced by orexin-A (OXA) in male mice. Behavioural pharmacology, neurochemical, molecular and genetic approaches were used. Key results: The selective inhibitor of 2-arachidonoylglycerol (2-AG) biosynthesis O7460 abolished the fear extinction deficits induced by OXA. Accordingly, increased 2-AG levels were observed in the amygdala and hippocampus of mice treated with OXA that do not extinguish fear, suggesting that high levels of this endocannabinoid are related to poor extinction. Impairment of fear extinction induced by OXA was associated with increased expression of CB2 cannabinoid receptor (CB2R) in microglial cells of the basolateral amygdala. Consistently, the intra-amygdala infusion of the CB2R antagonist AM630 completely blocked the impaired extinction promoted by OXA. Microglial and CB2R expression depletion in the amygdala with PLX5622 chow also prevented these extinction deficits. Conclusions and implications: We reveal that overactivation of the orexin system leads to impaired fear extinction through 2-AG and amygdalar CB2R. This novel mechanism may pave the way towards novel potential approaches to treat diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder, panic anxiety and phobias.


Author(s):  
Benjamin M. Rosenberg ◽  
Vincent Taschereau-Dumouchel ◽  
Hakwan Lau ◽  
Katherine S. Young ◽  
Robin Nusslock ◽  
...  

2021 ◽  
Vol 131 ◽  
pp. 1264-1274
Author(s):  
Madelyne A. Bisby ◽  
A.A. Stylianakis ◽  
K.D. Baker ◽  
R. Richardson

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mayumi Watanabe ◽  
Akira Uematsu ◽  
Joshua P. Johansen

AbstractThe ability to extinguish aversive memories when they are no longer associated with danger is critical for balancing survival with competing adaptive demands. Previous studies demonstrated that the infralimbic cortex (IL) is essential for extinction of learned fear, while neural activity in the prelimbic cortex (PL) facilitates fear responding and is negatively correlated with the strength of extinction memories. Though these adjacent regions in the prefrontal cortex maintain mutual synaptic connectivity, it has been unclear whether PL and IL interact functionally with each other during fear extinction learning. Here we addressed this question by recording local field potentials (LFPs) simultaneously from PL and IL of awake behaving rats during extinction of auditory fear memories. We found that LFP power in the fast gamma frequency (100–200 Hz) in both PL and IL regions increased during extinction learning. In addition, coherency analysis showed that synchronization between PL and IL in the fast gamma frequency was enhanced over the course of extinction. These findings support the hypothesis that interregional interactions between PL and IL increase as animals extinguish aversive memories.


2021 ◽  
Vol 53 ◽  
pp. S173-S174
Author(s):  
I.A. Georgescu ◽  
R.W. Sala ◽  
J.L. Frontera ◽  
H. Baba Aissa ◽  
C. Lena ◽  
...  

2021 ◽  
Vol 201 ◽  
pp. 108842
Author(s):  
Ming Chen ◽  
Ying Li ◽  
Ying Liu ◽  
Haibo Xu ◽  
Lin-Lin Bi
Keyword(s):  

Author(s):  
Sabra S. Inslicht ◽  
Andrea N. Niles ◽  
Thomas J. Metzler ◽  
Sa’ar L. Lipshitz ◽  
Christian Otte ◽  
...  

AbstractFear extinction underlies prolonged exposure, one of the most well-studied treatments for posttraumatic stress disorder (PTSD). There has been increased interest in exploring pharmacological agents to enhance fear extinction learning in humans and their potential as adjuncts to PE. The objective of such adjuncts is to augment the clinical impact of PE on the durability and magnitude of symptom reduction. In this study, we examined whether hydrocortisone (HC), a corticosteroid, and D-Cycloserine (DCS), an N-methyl-D-aspartate receptor partial agonist, enhance fear extinction learning and consolidation in individuals with PTSD. In a double-blind placebo-controlled 3-group experimental design, 90 individuals with full or subsyndromal PTSD underwent fear conditioning with stimuli that were paired (CS+) or unpaired (CS−) with shock. Extinction learning occurred 72 h later and extinction retention was tested one week after extinction. HC 25 mg, DCS 50 mg or placebo was administered one hour prior to extinction learning. During extinction learning, the DCS and HC groups showed a reduced differential CS+/CS− skin conductance response (SCR) compared to placebo (b = −0.19, CI = −0.01 to −37, p = 0.042 and b = −0.25, CI = −08 to −0.43, p = 0.005, respectively). A nonsignificant trend for a lower differential CS+/CS− SCR in the DCS group, compared to placebo, (b = −0.25, CI = 0.04 to −0.55, p = 0.089) was observed at retention testing, one week later. A single dose of HC and DCS facilitated fear extinction learning in participants with PTSD symptoms. While clinical implications have yet to be determined, our findings suggest that glucocorticoids and NMDA agonists hold promise for facilitating extinction learning in PTSD.


Sign in / Sign up

Export Citation Format

Share Document