scholarly journals Experience-Dependent and Independent Binocular Correspondence of Receptive Field Subregions in Mouse Visual Cortex

2013 ◽  
Vol 24 (6) ◽  
pp. 1658-1670 ◽  
Author(s):  
R. Sarnaik ◽  
B.-S. Wang ◽  
J. Cang
Author(s):  
Rinaldo D. D’Souza ◽  
Quanxin Wang ◽  
Weiqing Ji ◽  
Andrew M. Meier ◽  
Henry Kennedy ◽  
...  

ABSTRACTNeocortical circuit computations underlying active vision are performed by a distributed network of reciprocally connected, functionally specialized areas. Mouse visual cortex is a dense, hierarchically organized network, comprising subnetworks that form preferentially interconnected processing streams. To determine the detailed layout of the mouse visual hierarchy, laminar patterns formed by interareal axonal projections, originating in each of ten visual areas were analyzed. Reciprocally connected pairs of areas, and shared targets of pairs of source areas, exhibited structural features consistent with a hierarchical organization. Beta regression analyses, which estimated a continuous measure of hierarchical distance, indicated that the network comprises multiple hierarchies embedded within overlapping processing levels. Single unit recordings showed that within each processing stream, receptive field sizes typically increased with increasing hierarchical level; however, ventral stream areas showed overall larger receptive field diameters. Together, the results reveal canonical and noncanonical hierarchical network motifs in mouse visual cortex.


Sign in / Sign up

Export Citation Format

Share Document