ultrasound stimulation
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 141)

H-INDEX

25
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Ke Zeng ◽  
Ghazaleh Darmani ◽  
Anton Fomenko ◽  
Xue Xia ◽  
Stephanie Tran ◽  
...  

2021 ◽  
Author(s):  
Shubham Mirg ◽  
Haoyang Chen ◽  
Kevin L. Turner ◽  
Jinyun Liu ◽  
Bruce J. Gluckman ◽  
...  

AbstractOptical resolution photoacoustic microscopy (OR-PAM) can map the cerebral vasculature at capillary level resolution. However, the OR-PAM setup’s bulky imaging head makes awake mouse brain imaging challenging and inhibits its integration with other optical neuroimaging modalities. Moreover, the glass cranial windows used for optical microscopy are unsuitable for OR-PAM due to the acoustic impedance mismatch between the glass plate and the tissue. To overcome these challenges, we propose a lithium niobate based transparent ultrasound trans-ducer (TUT) as a cranial window on a thinned mouse skull. The TUT cranial window simplifies the imaging head considerably due to its dual functionality as an optical window and ultrasound transducer. The window remains stable for six weeks, with no noticeable inflammation and minimal bone regrowth. The TUT window’s potential is demonstrated by imaging the awake mouse cerebral vasculature using OR-PAM, intrinsic optical signal imaging and two-photon microscopy. The TUT cranial window can potentially also be used for ultrasound stimulation and simultaneous multimodal imaging of the awake mouse brain.


Author(s):  
G. Darmani ◽  
T.O. Bergmann ◽  
K. Butts Pauly ◽  
C.F. Caskey ◽  
L. de Lecea ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Mincheol Park ◽  
Gia Minh Hoang ◽  
Thien Nguyen ◽  
Eunkyung Lee ◽  
Hyun Jin Jung ◽  
...  

Abstract Background Alzheimer’s disease (AD) is the most common cause of dementia, and is characterized by amyloid-β (Aβ) plaques and tauopathy. Reducing Aβ has been considered a major AD treatment strategy in pharmacological and non-pharmacological approaches. Impairment of gamma oscillations, which play an important role in perception and cognitive function, has been shown in mouse AD models and human patients. Recently, the therapeutic effect of gamma entrainment in AD mouse models has been reported. Given that ultrasound is an emerging neuromodulation modality, we investigated the effect of ultrasound stimulation pulsed at gamma frequency (40 Hz) in an AD mouse model. Methods We implanted electroencephalogram (EEG) electrodes and a piezo-ceramic disc ultrasound transducer on the skull surface of 6-month-old 5×FAD and wild-type control mice (n = 12 and 6, respectively). Six 5×FAD mice were treated with two-hour ultrasound stimulation at 40 Hz daily for two weeks, and the other six mice received sham treatment. Soluble and insoluble Aβ levels in the brain were measured by enzyme-linked immunosorbent assay. Spontaneous EEG gamma power was computed by wavelet analysis, and the brain connectivity was examined with phase-locking value and cross-frequency phase-amplitude coupling. Results We found that the total Aβ42 levels, especially insoluble Aβ42, in the treatment group decreased in pre- and infra-limbic cortex (PIL) compared to that of the sham treatment group. A reduction in the number of Aβ plaques was also observed in the hippocampus. There was no increase in microbleeding in the transcranial ultrasound stimulation (tUS) group. In addition, the length and number of microglial processes decreased in PIL and hippocampus. Encelphalographic spontaneous gamma power was increased, and cross-frequency coupling was normalized, implying functional improvement after tUS stimulation. Conclusion These results suggest that the transcranial ultrasound-based gamma-band entrainment technique can be an effective therapy for AD by reducing the Aβ load and improving brain connectivity.


Author(s):  
Ciara Felix ◽  
Davide Folloni ◽  
Haoyu Chen ◽  
Jerome Sallet ◽  
Antoine Jerusalem

2021 ◽  
Author(s):  
Lingzhi Jing ◽  
Suna Fan ◽  
Xiang Yao ◽  
Yaopeng Zhang

Abstract Bone tissue with strong adaptability is often in a complex dynamical microenvironment in vivo, which is associated with the pathogenesis and treatment of orthopedic diseases. Therefore, it is of great significance to investigate the effects of corresponding compound stimulation on cell behaviors. Herein, a fluid shear stress (FSS) plus ultrasound stimulation platform suitable for cell studies based on a microfluidic chip was constructed and bone marrow mesenchymal stem cell (BMSC) was chosen as a model cell. The proliferation and osteogenesis of BMSCs under the compound stimulation of FSS plus ultrasound in growth medium without any soluble induction factors were firstly investigated. Single FSS stimulation and static culture conditions were also examined. Results illustrated that suitable single FSS stimulation (about 0.06 dyn/cm2) could significantly enhance cell proliferation and osteogenesis simultaneously when compare to the static control, while greater FSS mitigated or even restricted these enhancing effects. Interestingly, ultrasound stimulation combined with this suitable FSS stimulation further accelerated cell proliferation as the intensity of ultrasound increasing. As for the osteogenesis under compound stimulation, it was relatively restricted under lower ultrasound intensity (about 0.075 W/cm2), while promoted when the intensity became higher (about 1.75W/cm2). This study suggests that both the cell proliferation and osteogenesis are very responsive to the magnitudes of FSS and ultrasound stimulations and can be both significantly enhanced by proper combination strategies. Moreover, these findings will provide valuable references for the construction of effective cell bioreactors and also the treatment of orthopedic diseases.


2021 ◽  
Author(s):  
Sara Cadoni ◽  
Charlie Demene ◽  
Matthieu Provansal ◽  
Diep Nguyen ◽  
Dasha Nelidova ◽  
...  

Remote, precisely controlled activation of the brain is a fundamental challenge in the development of brain machine interfaces providing feasible rehabilitation strategies for neurological disorders. Low-frequency ultrasound stimulation can be used to modulate neuronal activity deep in the brain, but this approach lacks spatial resolution and cellular selectivity and loads the brain with high levels of acoustic energy. The combination of the expression of ultrasound-sensitive proteins with ultrasound stimulation (sonogenetic stimulation) can provide cellular selectivity and higher sensitivity, but such strategies have been subject to severe limitations in terms of spatiotemporal resolution in vivo, precluding their use for real-life applications. We used the expression of large-conductance mechanosensitive ion channels (MscL) with high-frequency ultrasonic stimulation for a duration of milliseconds to activate neurons selectively at a relatively high spatiotemporal resolution in the rat retina ex vivo and the primary visual cortex of rodents in vivo. This spatiotemporal resolution was achieved at low energy levels associated with negligible tissue heating and far below those leading to complications in ultrasound neuromodulation. We showed, in an associative learning test, that sonogenetic stimulation of the visual cortex generated light perception. Our findings demonstrate that sonogenetic stimulation is compatible with millisecond pattern presentation for visual restoration at the cortical level. They represent a step towards the precise transfer of information over large distances to the cortical and subcortical regions of the brain via an approach less invasive than that associated with current brain machine interfaces and with a wide range of applications in neurological disorders.


2021 ◽  
Vol 14 (6) ◽  
pp. 1592
Author(s):  
Ke Zeng ◽  
Ghazaleh Darmani ◽  
Anton Fomenko ◽  
Xue Xia ◽  
Stephanie Tran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document