Necessity of a priori design considerations in experimental statistical determination of deviation from linearity.

1979 ◽  
Vol 25 (12) ◽  
pp. 2052-2053 ◽  
Author(s):  
T W Stephens
1987 ◽  
Vol 64 (5) ◽  
pp. 425 ◽  
Author(s):  
John F. Geldard ◽  
Lawrence R. Pratt

2008 ◽  
Vol 40 (01) ◽  
pp. 31-48
Author(s):  
Markus Kiderlen

We discuss the determination of the mean normal measure of a stationary random set Z ⊂ ℝ d by taking measurements at the intersections of Z with k-dimensional planes. We show that mean normal measures of sections with vertical planes determine the mean normal measure of Z if k ≥ 3 or if k = 2 and an additional mild assumption holds. The mean normal measures of finitely many flat sections are not sufficient for this purpose. On the other hand, a discrete mean normal measure can be verified (i.e. an a priori guess can be confirmed or discarded) using mean normal measures of intersections with m suitably chosen planes when m ≥ ⌊d / k⌋ + 1. This even holds for almost all m-tuples of k-dimensional planes are viable for verification. A consistent estimator for the mean normal measure of Z, based on stereological measurements in vertical sections, is also presented.


2018 ◽  
Vol 35 (2) ◽  
pp. 79
Author(s):  
Bernadete F. Cavalcanti ◽  
Lourdes Cristina Lucena Agostinho ◽  
Luciano Nascimento

Measurements of parameters expressed in terms of carbonic species such as Alkalinity and Acidity of saline waters do not analyze the influence of external parameters to the titration such as Total free and associated Carbonic Species Concentration, activity coefficient, ion pairing formation and Residual Liquid Junction Potential in pH measurements. This paper shows the development of F5BC titration function based on the titrations developed by Gran (1952) for the carbonate system of natural waters. For practical use, samples of saline watersfrom Pocinhos reservoir in Paraiba were submitted to titration and linear regression analysis. Results showed that F5BC involves F1x and F2x Gran functions determination, respectively, for Alkalinity and Acidity calculations without knowing “a priori” the endpoint of the titration. F5BC also allows the determination of the First and Second Apparent Dissociation Constant of the carbonate system of saline and high ionic strength waters.


Sign in / Sign up

Export Citation Format

Share Document