Determination of trans-phylloquinone in children's serum.

1989 ◽  
Vol 35 (5) ◽  
pp. 874-878 ◽  
Author(s):  
F Moussa ◽  
L Dufour ◽  
J R Didry ◽  
P Aymard

Abstract By optimizing the conditions for determining trans-phylloquinone and its metabolite, K-2,3-epoxide, in serum through a two-step HPLC process combined with fluorometric detection after coulometric reduction, we have been able to develop a method applicable to small volumes of serum (200 to 500 microL). The limit of detection (signal-to-noise ratio of 3) was 15 ng/L for trans-phylloquinone, 30 ng/L for K-2,3-epoxide. The trans-phylloquinone concentrations measured by this method in serum from 82 children, ages one to six years, whose results were normal for overall coagulation tests, ranged from 40 to 880 ng/L (median 175 ng/L). We discuss these findings and compare them with vitamin K1(20) values reported for adults.

Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


2000 ◽  
Vol 83 (4) ◽  
pp. 957-962 ◽  
Author(s):  
George M Ware ◽  
G William Chase ◽  
Ronald R Eitenmiller ◽  
Austin R Long

Abstract A liquid chromatographic (LC) method is described for the determination of vitamin K1 in medical foods. The sample is enzymatically digested with lipase and α-amylase and extracted with 1% sodium bicarbonate solution–isopropanol (1 + 1). After C18 solid-phase extraction, vitamin K1 is separated by nonaqueous reversed-phase LC, converted to the hydroquinone by postcolumn zinc reduction, and quantitated by fluorescence detection. The limit of detection is 8 pg (3 σ), and the limit of quantitation is 27 pg (10 σ) on column. Linear response ranged from 0.1 to 1.0 ng vitamin K1 (r = 0.9999). The mean recovery (n = 38) for all spiking levels was 101.6 ± 2.85%. Analysis of Standard Reference Material 1846, Infant Formula, gave a mean value of 0.95 ± 0.088 mg vitamin K/kg (K or K1?)(n = 31) with a coefficient of variation of 9.26.


2020 ◽  
Vol 32 (6) ◽  
pp. 1309-1313
Author(s):  
Duggirala Parvatha Venkata Vardhani Devi ◽  
Kapavarapu Maruthi Venkata Narayanarao ◽  
Pulipaka Shyamala ◽  
Rallabhandi Murali Krishna ◽  
Komali Siva Prasad

A new gradient elution mode HPLC method was developed and validated to detect and monitor the novel impurity namely methyl ezitimibe in ezetimibe drug substances. Chromatographic detection and analysis of methyl ezetimibe was performed on XBridge C18 column with mobile phase consisting of 0.02 M phosphate buffer (pH 5) and acetonitrile with 1 mL/min flow rate in gradient elution mode. Methyl ezetimibe was detected and monitored at 248 nm. The calibration curve was linear over range of 0.015 to 0.219% concentration. The limit of detection and quantification were computed as 0.005% (signal to noise ratio 3.60) and 0.015% (signal to noise ratio 15.96), respectively. The precision was 0.97% (%RSD) and accuracy was 93.2 to 98.2% (recovery). The developed method was proved suitable to detect and monitor methyl ezetimibe impurity in ezetimibe drug substances.


Sign in / Sign up

Export Citation Format

Share Document