Determination of the Best Emulsion for the Microscopy of Crystals

Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.

Geophysics ◽  
1970 ◽  
Vol 35 (1) ◽  
pp. 24-32 ◽  
Author(s):  
Bibhu P. Dash ◽  
K. Ahmed Obaidullah

A seismic trace may be represented as the sum of a signal and noise series. Each of the series may further be represented by convolution of a finite wavelet and a random series. With this representation, and provided that the signal and noise are uncorrelated, it is possible, in theory, to extract signal and noise statistics from two adjacent traces of a reflection seismogram. Some experiments are shown on model seismic traces, and it is shown that within the time‐duration of the seismic wavelet, the estimates of signal and noise statistics are reasonable for low signal‐to‐noise ratio. There remains, however, the problem of determining the optimum time lengths of the estimates.


1989 ◽  
Vol 35 (5) ◽  
pp. 874-878 ◽  
Author(s):  
F Moussa ◽  
L Dufour ◽  
J R Didry ◽  
P Aymard

Abstract By optimizing the conditions for determining trans-phylloquinone and its metabolite, K-2,3-epoxide, in serum through a two-step HPLC process combined with fluorometric detection after coulometric reduction, we have been able to develop a method applicable to small volumes of serum (200 to 500 microL). The limit of detection (signal-to-noise ratio of 3) was 15 ng/L for trans-phylloquinone, 30 ng/L for K-2,3-epoxide. The trans-phylloquinone concentrations measured by this method in serum from 82 children, ages one to six years, whose results were normal for overall coagulation tests, ranged from 40 to 880 ng/L (median 175 ng/L). We discuss these findings and compare them with vitamin K1(20) values reported for adults.


Author(s):  
Lucien M. Biberman

Factors long considered to be of primary importance to the visual performance of observers of displays of sampled imagery have been shown to be dependent upon, subordinate to, or no more important than other factors largely overlooked. In TV displays, for example, sharp raster lines, thought by many to be the hallmark of a good display, have been shown to interfere with the true image to form false images, and “shades of gray” and “resolution”, often treated as independent variables, have been shown to depend directly upon the signal-to-noise ratio in the imagery as a function of spatial frequency. Experimental and theoretical work in the area is briefly reviewed, and some implications for system design criteria are pointed out.


Sign in / Sign up

Export Citation Format

Share Document