scholarly journals The natural functional biopolymer matrix demonstrates to be a promise for safe cell therapy in Parkinson’s disease

2021 ◽  
Vol 31 (Supplement_2) ◽  
Author(s):  
Ana Carolina Irioda ◽  
Bassam Felipe Mogharbel ◽  
Priscila Elias Ferreira Stricker ◽  
Nathalia Barth Oliverira ◽  
Nádia Nascimento da Rosa ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) are undifferentiated cells and can be isolated from many tissues, including adipose tissue. MSCs neuronal differentiation ability has arisen interest in research with these cells in neurodegenerative diseases, such as Parkinson’s disease (PD). To differentiate MSCs in cells that produce dopamine that posteriorly potential to be a safe cell therapy for PD. Methods MSCs were isolated from adipose tissue, characterized by flow cytometry and trilineage differentiation, and cultivated seeded on natural functional biopolymer matrix (NFBX) to differentiate in neuronal precursors. Finally, a neural precursor was cultivated in the dopaminergic differentiation medium. The immunocytochemistry was performed with antibody anti-Nestin for precursor neural and antibodies anti-ß III-tubulin and hydroxylase tyrosine. Then, quantification of dopamine was made by the ELISA kit in the culture medium. Results The cytometric analysis of MSCs and the trilineage test to chondrocyte, osteocyte, and adipocyte demonstrated their pluripotency. Cells seeded and cultivated over NFBX have developed neurospheres, and their mechanical dissociated cells were Nestin positive. Dopaminergic differentiation was confirmed with positivity for ß-III tubulin and hydroxylase tyrosine. The dopamine concentration was very high in one sample (74.91 ng/mL). Without this sample, the media was 2.34 ± 2.13 ng/mL. The difference between dopamine concentrations was probably due to donors' metabolic characteristics. Conclusions The MSCs differentiated in neural precursor cells without genetic modification or growth factors, using only this NFBX. When these neural precursors were induced to differentiate, they were available to produce dopamine, demonstrating a functional neuronal differentiation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jui-Chih Chang ◽  
Yi-Chun Chao ◽  
Huei-Shin Chang ◽  
Yu-Ling Wu ◽  
Hui-Ju Chang ◽  
...  

AbstractThe feasibility of delivering mitochondria intranasally so as to bypass the blood–brain barrier in treating Parkinson's disease (PD), was evaluated in unilaterally 6-OHDA-lesioned rats. Intranasal infusion of allogeneic mitochondria conjugated with Pep-1 (P-Mito) or unconjugated (Mito) was performed once a week on the ipsilateral sides of lesioned brains for three months. A significant improvement of rotational and locomotor behaviors in PD rats was observed in both mitochondrial groups, compared to sham or Pep-1-only groups. Dopaminergic (DA) neuron survival and recovery > 60% occurred in lesions of the substantia nigra (SN) and striatum in Mito and P-Mito rats. The treatment effect was stronger in the P-Mito group than the Mito group, but the difference was insignificant. This recovery was associated with restoration of mitochondrial function and attenuation of oxidative damage in lesioned SN. Notably, P-Mito suppressed plasma levels of inflammatory cytokines. Mitochondria penetrated the accessory olfactory bulb and doublecortin-positive neurons of the rostral migratory stream (RMS) on the ipsilateral sides of lesions and were expressed in striatal, but not SN DA neurons, of both cerebral hemispheres, evidently via commissural fibers. This study shows promise for intranasal delivery of mitochondria, confirming mitochondrial internalization and migration via RMS neurons in the olfactory bulb for PD therapy.


Author(s):  
Yasushi Kondo ◽  
Tsuyoshi Okuno ◽  
Sayaka Asari ◽  
Shin-ichi Muramatsu

Author(s):  
Sara Ekraminasab ◽  
Mahsa Dolatshahi ◽  
Mohammadmahdi Sabahi ◽  
Mahta Mardani ◽  
Sina Rashedi

Sign in / Sign up

Export Citation Format

Share Document