Patterns of Nucleotide Substitution in Mitochondrial Protein Coding Genes of Vertebrates

Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 537-548 ◽  
Author(s):  
Sudhir Kumar

Abstract Maximum likelihood methods were used to study the differences in substitution rates among the four nucleotides and among different nucleotide sites in mitochondrial protein-coding genes of vertebrates. In the lst+2nd codon position data, the frequency of nucleotide G is negatively correlated with evolutionary rates of genes, substitution rates vary substantially among sites, and the transition / transversion rate bias (R) is two to five times larger than that expected at random. Generally, largest transition biases and greatest differences in substitution rates among sites are found in the highly conserved genes. The 3rd positions in placental mammal genes exhibit strong nucleotide composition biases and the transitional rates exceed transversional rates by one to two orders of magnitude. Tamura-Nei and Hasegawa-Kishino-Yano models with gamma distributed variable rates among sites (gamma parameter, α) adequately describe the nucleotide substitution process in 1st+2nd position data. In these data, ignoring differences in substitution rates among sites leads to largest biases while estimating substitution rates. Kimura's two-parameter model with variable-rates among sites performs satisfactorily in likelihood estimation of R, α, and overall amount of evolution for lst+2nd position data. It can also be used to estimate pairwise distances with appropriate values of α for a majority of genes.

Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 115
Author(s):  
Yuxin Hu ◽  
Weiyue Xing ◽  
Zhengyu Hu ◽  
Guoxiang Liu

We sequenced the mitochondrial genome of six colonial volvocine algae, namely: Pandorina morum, Pandorina colemaniae, Volvulina compacta, Colemanosphaera angeleri, Colemanosphaera charkowiensi, and Yamagishiella unicocca. Previous studies have typically reconstructed the phylogenetic relationship between colonial volvocine algae based on chloroplast or nuclear genes. Here, we explore the validity of phylogenetic analysis based on mitochondrial protein-coding genes. We found phylogenetic incongruence of the genera Yamagishiella and Colemanosphaera. In Yamagishiella, the stochastic error and linkage group formed by the mitochondrial protein-coding genes prevent phylogenetic analyses from reflecting the true relationship. In Colemanosphaera, a different reconstruction approach revealed a different phylogenetic relationship. This incongruence may be because of the influence of biological factors, such as incomplete lineage sorting or horizontal gene transfer. We also analyzed the substitution rates in the mitochondrial and chloroplast genomes between colonial volvocine algae. Our results showed that all volvocine species showed significantly higher substitution rates for the mitochondrial genome compared with the chloroplast genome. The nonsynonymous substitution (dN)/synonymous substitution (dS) ratio is similar in the genomes of both organelles in most volvocine species, suggesting that the two counterparts are under a similar selection pressure. We also identified a few chloroplast protein-coding genes that showed high dN/dS ratios in some species, resulting in a significant dN/dS ratio difference between the mitochondrial and chloroplast genomes.


2019 ◽  
Vol 07 (02) ◽  
Author(s):  
Saira Bibi ◽  
Muhammad Fiaz Khan ◽  
Aqsa Rehman ◽  
Faisal Nouroz

2019 ◽  
Vol 9 (12) ◽  
pp. 6821-6832 ◽  
Author(s):  
Jacob Njaramba Ngatia ◽  
Tian Ming Lan ◽  
Thi Dao Dinh ◽  
Le Zhang ◽  
Ahmed Khalid Ahmed ◽  
...  

2020 ◽  
Vol 21 (13) ◽  
pp. 4685
Author(s):  
Zhenhai Li ◽  
Min Li ◽  
Shannan Xu ◽  
Li Liu ◽  
Zuozhi Chen ◽  
...  

Carangidae are ecologically and economically important marine fish. The complete mitogenomes of three Carangidae species (Alectis indicus, Decapterus tabl, and Alepes djedaba) were sequenced, characterized, and compared with 29 other species of the family Carangidae in this study. The length of the three mitogenomes ranged from 16,530 to 16,610 bp, and the structures included 2 rRNA genes (12S rRNA and 16S rRNA), 1 control region (a non-coding region), 13 protein-coding genes, and 22 tRNA genes. Among the 22 tRNA genes, only tRNA-Ser (GCT) was not folded into a typical cloverleaf secondary structure and had no recognizable DHU stem. The full-length sequences and protein-coding genes (PCGs) of the mitogenomes of the three species all had obvious AT biases. The majority of the AT-skew and GC-skew values of the PCGs among the three species were negative, demonstrating bases T and C were more plentiful than A and G. Analyses of Ka/Ks and overall p-genetic distance demonstrated that ATP8 showed the highest evolutionary rate and COXI/COXII were the most conserved genes in the three species. The phylogenetic tree based on PCGs sequences of mitogenomes using maximum likelihood and Bayesian inference analyses showed that three clades were divided corresponding to the subfamilies Caranginae, Naucratinae, and Trachinotinae. The monophyly of each superfamily was generally well supported. The divergence time analyses showed that Carangidae evolved during three geological periods, the Cretaceous, Paleogene, and Neogene. A. indicus began to differentiate from other species about 27.20 million years ago (Mya) in the early Miocene, while D. tabl (21.25 Mya) and A. djedaba (14.67 Mya) differentiated in the middle Oligocene.


2008 ◽  
Vol 66 (3) ◽  
pp. 197-209 ◽  
Author(s):  
Angelique H. Riepsamen ◽  
Vivian C. Blok ◽  
Mark Phillips ◽  
Tracey Gibson ◽  
Mark Dowton

Sign in / Sign up

Export Citation Format

Share Document