scholarly journals Using onset times from frequent seismic surveys to understand fluid flow at the Peace River Field, Canada

2020 ◽  
Vol 223 (3) ◽  
pp. 1610-1629
Author(s):  
Gil Hetz ◽  
Akhil Datta-Gupta ◽  
Justyna K Przybysz-Jarnut ◽  
Jorge L Lopez ◽  
D W Vasco

SUMMARY Our limited knowledge of the relationship between changes in the state of an aquifer or reservoir and the corresponding changes in the elastic moduli, that is the rock physics model, hampers the effective use of time-lapse seismic observations for estimating flow properties within the Earth. A central problem is the complicated dependence of the magnitude of time-lapse changes on the saturation, pressure, and temperature changes within an aquifer or reservoir. We describe an inversion methodology for reservoir characterization that uses onset times, the calendar time of the change in seismic attributes, rather than the magnitude of the changes. We find that onset times are much less sensitive than magnitudes to the rock physics model used to relate time-lapse observations to changes in saturation, temperature and fluid pressure. We apply the inversion scheme to observations from daily monitoring of enhanced oil recovery at the Peace River field in Canada. An array of 1492 buried hydrophones record seismic signals from 49 buried sources. Time-shifts for elastic waves traversing the reservoir are extracted from the daily time-lapse cubes. In our analysis 175 images of time-shifts are transformed into a single map of onset times, leading to a substantial reduction in the volume of data. These observations are used in conjunction with bottom hole pressure data to infer the initial conditions prior to the injection, and to update the reservoir permeability model. The combination of a global and local inversion scheme produces a collection of reservoir models that are best described by three clusters. The updated model leads to a nearly 70 percent reduction in seismic data misfit. The final set of solutions successfully predict the observed normalized pressure history during the soak and flow-back into the wells between 82 and 175 days into the cyclic steaming operation.

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Manzar Fawad ◽  
Nazmul Haque Mondol

AbstractTo mitigate the global warming crisis, one of the effective ways is to capture CO2 at an emitting source and inject it underground in saline aquifers, depleted oil and gas reservoirs, or in coal beds. This process is known as carbon capture and storage (CCS). With CCS, CO2 is considered a waste product that has to be disposed of properly, like sewage and other pollutants. While and after CO2 injection, monitoring of the CO2 storage site is necessary to observe CO2 plume movement and detect potential leakage. For CO2 monitoring, various physical property changes are employed to delineate the plume area and migration pathways with their pros and cons. We introduce a new rock physics model to facilitate the time-lapse estimation of CO2 saturation and possible pressure changes within a CO2 storage reservoir based on physical properties obtained from the prestack seismic inversion. We demonstrate that the CO2 plume delineation, saturation, and pressure changes estimations are possible using a combination of Acoustic Impedance (AI) and P- to S-wave velocity ratio (Vp/Vs) inverted from time-lapse or four-dimensional (4D) seismic. We assumed a scenario over a period of 40 years comprising an initial 25 year injection period. Our results show that monitoring the CO2 plume in terms of extent and saturation can be carried out using our rock physics-derived method. The suggested method, without going into the elastic moduli level, handles the elastic property cubes, which are commonly obtained from the prestack seismic inversion. Pressure changes quantification is also possible within un-cemented sands; however, the stress/cementation coefficient in our proposed model needs further study to relate that with effective stress in various types of sandstones. The three-dimensional (3D) seismic usually covers the area from the reservoir's base to the surface making it possible to detect the CO2 plume's lateral and vertical migration. However, the comparatively low resolution of seismic, the inversion uncertainties, lateral mineral, and shale property variations are some limitations, which warrant consideration. This method can also be applied for the exploration and monitoring of hydrocarbon production.


2015 ◽  
Vol 3 (2) ◽  
pp. SM23-SM35
Author(s):  
Russell W. Carter ◽  
Kyle T. Spikes

Large-scale subsurface injection of [Formula: see text] has the potential to reduce emissions of atmospheric [Formula: see text] and improve oil recovery. Studying the effects of injected [Formula: see text] on the elastic properties of the saturated reservoir rock can help to improve long-term monitoring effectiveness and accuracy at locations undergoing [Formula: see text] injection. We used two vintages of existing 3D surface seismic data and well logs to probabilistically invert for the [Formula: see text] saturation and porosity at the Cranfield reservoir using a double-difference approach. The first step of this work was to calibrate the rock-physics model to the well-log data. Next, the baseline and time-lapse seismic data sets were inverted for acoustic impedance [Formula: see text] using a high-resolution basis pursuit inversion technique. The reservoir porosity was derived statistically from the rock-physics model based on the [Formula: see text] estimates inverted from the baseline survey. The porosity estimates were used in the double-difference routine as the fixed initial model from which [Formula: see text] saturation was then estimated from the time-lapse [Formula: see text] data. Porosity was assumed to remain constant between survey vintages; therefore, the changes between the baseline and time-lapse [Formula: see text] data may be inverted for [Formula: see text] saturation from the injection activities using the calibrated rock-physics model. Comparisons of inverted and measured porosity from well logs indicated quite accurate results. Estimates of [Formula: see text] saturation found less accuracy than the porosity estimates.


Geophysics ◽  
2021 ◽  
pp. 1-43
Author(s):  
Dario Grana

Rock physics models are physical equations that map petrophysical properties into geophysical variables, such as elastic properties and density. These equations are generally used in quantitative log and seismic interpretation to estimate the properties of interest from measured well logs and seismic data. Such models are generally calibrated using core samples and well log data and result in accurate predictions of the unknown properties. Because the input data are often affected by measurement errors, the model predictions are often uncertain. Instead of applying rock physics models to deterministic measurements, I propose to apply the models to the probability density function of the measurements. This approach has been previously adopted in literature using Gaussian distributions, but for petrophysical properties of porous rocks, such as volumetric fractions of solid and fluid components, the standard probabilistic formulation based on Gaussian assumptions is not applicable due to the bounded nature of the properties, the multimodality, and the non-symmetric behavior. The proposed approach is based on the Kumaraswamy probability density function for continuous random variables, which allows modeling double bounded non-symmetric distributions and is analytically tractable, unlike the Beta or Dirichtlet distributions. I present a probabilistic rock physics model applied to double bounded continuous random variables distributed according to a Kumaraswamy distribution and derive the analytical solution of the posterior distribution of the rock physics model predictions. The method is illustrated for three rock physics models: Raymer’s equation, Dvorkin’s stiff sand model, and Kuster-Toksoz inclusion model.


Sign in / Sign up

Export Citation Format

Share Document