Rock-physics-based double-difference inversion for CO2 saturation and porosity at the Cranfield CO2 injection site

2015 ◽  
Vol 3 (2) ◽  
pp. SM23-SM35
Author(s):  
Russell W. Carter ◽  
Kyle T. Spikes

Large-scale subsurface injection of [Formula: see text] has the potential to reduce emissions of atmospheric [Formula: see text] and improve oil recovery. Studying the effects of injected [Formula: see text] on the elastic properties of the saturated reservoir rock can help to improve long-term monitoring effectiveness and accuracy at locations undergoing [Formula: see text] injection. We used two vintages of existing 3D surface seismic data and well logs to probabilistically invert for the [Formula: see text] saturation and porosity at the Cranfield reservoir using a double-difference approach. The first step of this work was to calibrate the rock-physics model to the well-log data. Next, the baseline and time-lapse seismic data sets were inverted for acoustic impedance [Formula: see text] using a high-resolution basis pursuit inversion technique. The reservoir porosity was derived statistically from the rock-physics model based on the [Formula: see text] estimates inverted from the baseline survey. The porosity estimates were used in the double-difference routine as the fixed initial model from which [Formula: see text] saturation was then estimated from the time-lapse [Formula: see text] data. Porosity was assumed to remain constant between survey vintages; therefore, the changes between the baseline and time-lapse [Formula: see text] data may be inverted for [Formula: see text] saturation from the injection activities using the calibrated rock-physics model. Comparisons of inverted and measured porosity from well logs indicated quite accurate results. Estimates of [Formula: see text] saturation found less accuracy than the porosity estimates.

2021 ◽  
pp. 1-59
Author(s):  
Kai Lin ◽  
Xilei He ◽  
Bo Zhang ◽  
Xiaotao Wen ◽  
Zhenhua He ◽  
...  

Most of current 3D reservoir’s porosity estimation methods are based on analyzing the elastic parameters inverted from seismic data. It is well-known that elastic parameters vary with pore structure parameters such as pore aspect ratio, consolidate coefficient, critical porosity, etc. Thus, we may obtain inaccurate 3D porosity estimation if the chosen rock physics model fails properly address the effects of pore structure parameters on the elastic parameters. However, most of current rock physics models only consider one pore structure parameter such as pore aspect ratio or consolidation coefficient. To consider the effect of multiple pore structure parameters on the elastic parameters, we propose a comprehensive pore structure (CPS) parameter set that is generalized from the current popular rock physics models. The new CPS set is based on the first order approximation of current rock physics models that consider the effect of pore aspect ratio on elastic parameters. The new CPS set can accurately simulate the behavior of current rock physics models that consider the effect of pore structure parameters on elastic parameters. To demonstrate the effectiveness of proposed parameters in porosity estimation, we use a theoretical model to demonstrate that the proposed CPS parameter set properly addresses the effect of pore aspect ratio on elastic parameters such as velocity and porosity. Then, we obtain a 3D porosity estimation for a tight sand reservoir by applying it seismic data. We also predict the porosity of the tight sand reservoir by using neural network algorithm and a rock physics model that is commonly used in porosity estimation. The comparison demonstrates that predicted porosity has higher correlation with the porosity logs at the blind well locations.


Geophysics ◽  
2000 ◽  
Vol 65 (2) ◽  
pp. 565-573 ◽  
Author(s):  
Christine Ecker ◽  
Jack Dvorkin ◽  
Amos M. Nur

Marine seismic data and well‐log measurements at the Blake Ridge offshore South Carolina show that prominent seismic bottom‐simulating reflectors (BSRs) are caused by sediment layers with gas hydrate overlying sediments with free gas. We apply a theoretical rock‐physics model to 2-D Blake Ridge marine seismic data to determine gas‐hydrate and free‐gas saturation. High‐porosity marine sediment is modeled as a granular system where the elastic wave velocities are linked to porosity; effective pressure; mineralogy; elastic properties of the pore‐filling material; and water, gas, and gas‐hydrate saturation of the pore space. To apply this model to seismic data, we first obtain interval velocity using stacking velocity analysis. Next, all input parameters to the rock‐physics model, except porosity and water, gas, and gas hydrate saturation, are estimated from geologic information. To estimate porosity and saturation from interval velocity, we first assume that the entire sediment does not contain gas hydrate or free gas. Then we use the rock‐physics model to calculate porosity directly from the interval velocity. Such porosity profiles appear to have anomalies where gas hydrate and free gas are present (as compared to typical profiles expected and obtained in sediment without gas hydrate or gas). Porosity is underestimated in the hydrate region and is overestimated in the free‐gas region. We calculate the porosity residuals by subtracting a typical porosity profile (without gas hydrate and gas) from that with anomalies. Next we use the rock‐physics model to eliminate these anomalies by introducing gas‐hydrate or gas saturation. As a result, we obtain the desired 2-D saturation map. The maximum gas‐hydrate saturation thus obtained is between 13% and 18% of the pore space (depending on the version of the model used). These saturation values are consistent with those measured in the Blake Ridge wells (away from the seismic line), which are about 12%. Free‐gas saturation varies between 1% and 2%. The saturation estimates are extremely sensitive to the input velocity values. Therefore, accurate velocity determination is crucial for correct reservoir characterization.


2019 ◽  
Vol 67 (2) ◽  
pp. 557-575 ◽  
Author(s):  
Yaneng Luo ◽  
Handong Huang ◽  
Morten Jakobsen ◽  
Yadi Yang ◽  
Jinwei Zhang ◽  
...  

2018 ◽  
Vol 6 (4) ◽  
pp. SM1-SM8 ◽  
Author(s):  
Tingting Zhang ◽  
Yuefeng Sun

Fractured zones in deeply buried carbonate hills are important because they often have better permeability resulting in prolific production than similar low-porosity rocks. Nevertheless, their detection poses great challenge to conventional seismic inversion methods because they are mostly low in acoustic impedance and bulk modulus, hardly distinguishable from high-porosity zones or mudstones. A proxy parameter of pore structure defined in a rock-physics model, the so-called Sun model, has been used for delineating fractured zones in which the pore structure parameter is relatively high, whereas the porosity is low in general. Simultaneous seismic inversion of the pore structure parameter and porosity proves to be difficult and nontrivial in practice. Although the pore structure parameter is well-defined at locations where density, P-, and S-velocity are known from logs, estimation of P- and S-velocity information, especially density information from prestack seismic data is rather challenging. A three-step iterative inversion method, which uses acoustic, gradient, and elastic impedance from angle-stacked seismic data as input to the rock-physics model for calculating porosity and bulk and shear pore structure parameters simultaneously, is proposed and implemented to solve this problem. The methodology is successfully tested with well logs and seismic data from a deeply buried carbonate hill in the Bohai Bay Basin, China.


Geophysics ◽  
2005 ◽  
Vol 70 (3) ◽  
pp. O1-O11 ◽  
Author(s):  
Alexey Stovas ◽  
Martin Landrø

We investigate how seismic anisotropy influences our ability to distinguish between various production-related effects from time-lapse seismic data. Based on rock physics models and ultrasonic core measurements, we estimate variations in PP and PS reflectivity at the top reservoir interface for fluid saturation and pore pressure changes. The tested scenarios include isotropic shale, weak anisotropic shale, and highly anisotropic shale layers overlaying either an isotropic reservoir sand layer or a weak anisotropic sand layer. We find that, for transverse isotropic media with a vertical symmetry axis (TIV), the effect of weak anisotropy in the cap rock does not lead to significant errors in, for instance, the simultaneous determination of pore-pressure and fluid-saturation changes. On the other hand, changes in seismic anisotropy within the reservoir rock (caused by, for instance, increased fracturing) might be detectable from time-lapse seismic data. A new method using exact expressions for PP and PS reflectivity, including TIV anisotropy, is used to determine pressure and saturation changes over production time. This method is assumed to be more accurate than previous methods.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. MR1-MR13 ◽  
Author(s):  
Humberto S. Arévalo-López ◽  
Jack P. Dvorkin

Interpreting seismic data for petrophysical rock properties requires a rock-physics model that links the petrophysical rock properties to the elastic properties, such as velocity and impedance. Such a model can only be established from controlled experiments in which both groups of rock properties are measured on the same samples. A prolific source of such data is wellbore measurements. We use data from four wells drilled through a clastic offshore oil reservoir to perform rock-physics diagnostics, i.e., to find a theoretical rock-physics model that quantitatively explains the measurements. Using the model, we correct questionable well curves. Moreover, a crucial purpose of rock-physics diagnostics is to go beyond the settings represented in the wells and understand the seismic signatures of rock properties varying in a wider range via forward seismic modeling. With this goal in mind, we use our model to generate synthetic seismic gathers from perturbational modeling to address “what-if” scenarios not present in the wells.


Sign in / Sign up

Export Citation Format

Share Document