scholarly journals High-resolution near-surface velocity model building using full-waveform inversion—a case study from southwest Sweden

2014 ◽  
Vol 197 (3) ◽  
pp. 1693-1704 ◽  
Author(s):  
A. Adamczyk ◽  
M. Malinowski ◽  
A. Malehmir
2018 ◽  
Vol 58 (2) ◽  
pp. 884
Author(s):  
Lianping Zhang ◽  
Haryo Trihutomo ◽  
Yuelian Gong ◽  
Bee Jik Lim ◽  
Alexander Karvelas

The Schlumberger Multiclient Exmouth 3D survey was acquired over the Exmouth sub-basin, North West Shelf Australia and covers 12 600 km2. One of the primary objectives of this survey was to produce a wide coverage of high quality imaging with advanced processing technology within an agreed turnaround time. The complexity of the overburden was one of the imaging challenges that impacted the structuration and image quality at the reservoir level. Unlike traditional full-waveform inversion (FWI) workflow, here, FWI was introduced early in the workflow in parallel with acquisition and preprocessing to produce a reliable near surface velocity model from a smooth starting model. FWI derived an accurate and detailed near surface model, which subsequently benefitted the common image point (CIP) tomography model updates through to the deeper intervals. The objective was to complete the FWI model update for the overburden concurrently with the demultiple stages hence reflection time CIP tomography could start with a reasonably good velocity model upon completion of the demultiple process.


2016 ◽  
Vol 4 (4) ◽  
pp. SU25-SU39 ◽  
Author(s):  
Bingmu Xiao ◽  
Nadezhda Kotova ◽  
Samuel Bretherton ◽  
Andrew Ratcliffe ◽  
Gregor Duval ◽  
...  

Velocity model building is one of the most difficult aspects of the seismic processing sequence. But it is also one of the most important: an accurate earth model allows an accurate migrated image to be formed, which allows the geologist a better chance at an accurate interpretation of the area. In addition, the velocity model itself can provide complementary information about the geology and geophysics of the region. Full-waveform inversion (FWI) is a popular, high-end velocity model-building tool that can generate high-resolution earth models, especially in regions of the model probed by the transmitted (diving wave) arrivals on the recorded seismic data. The history of the South Gabon Basin is complex, leading to a rich geologic picture today and a very challenging velocity model-building process. We have developed a case study from the offshore Gabon area showing that FWI is able to help with the model-building process, and the resulting velocity model reveals features that improve the migrated image. The application of FWI is made on an extremely large area covering approximately 25,000 [Formula: see text], demonstrating that FWI can be applied to this magnitude of survey in a timely manner. In addition, the detail in the FWI velocity model aids the geologic interpretation by highlighting, among other things, the location of shallow gas pockets, buried channels, and carbonate rafts. The concept of actively using the FWI-derived velocity model to aid the interpretation in areas of complex geology, and/or to identify potential geohazards to avoid in an exploration context, is applicable to many parts of the world.


2019 ◽  
Vol 7 (2) ◽  
pp. SB43-SB52 ◽  
Author(s):  
Adriano Gomes ◽  
Joe Peterson ◽  
Serife Bitlis ◽  
Chengliang Fan ◽  
Robert Buehring

Inverting for salt geometry using full-waveform inversion (FWI) is a challenging task, mostly due to the lack of extremely low-frequency signal in the seismic data, the limited penetration depth of diving waves using typical acquisition offsets, and the difficulty in correctly modeling the amplitude (and kinematics) of reflection events associated with the salt boundary. However, recent advances in reflection FWI (RFWI) have allowed it to use deep reflection data, beyond the diving-wave limit, by extracting the tomographic term of the FWI reflection update, the so-called rabbit ears. Though lacking the resolution to fully resolve salt geometry, we can use RFWI updates as a guide for refinements in the salt interpretation, adding a partially data-driven element to salt velocity model building. In addition, we can use RFWI to update sediment velocities in complex regions surrounding salt, where ray-based approaches typically struggle. In reality, separating the effects of sediment velocity errors from salt geometry errors is not straightforward in many locations. Therefore, iterations of RFWI plus salt scenario tests may be necessary. Although it is still not the fully automatic method that has been envisioned for FWI, this combined approach can bring significant improvement to the subsalt image, as we examine on field data examples from the Gulf of Mexico.


Geophysics ◽  
2020 ◽  
pp. 1-57
Author(s):  
Daniele Colombo ◽  
Ernesto Sandoval ◽  
Diego Rovetta ◽  
Apostolos Kontakis

Land seismic velocity modeling is a difficult task largely related to the description of the near surface complexities. Full waveform inversion is the method of choice for achieving high-resolution velocity mapping but its application to land seismic data faces difficulties related to complex physics, unknown and spatially varying source signatures, and low signal-to-noise ratio in the data. Large parameter variations occur in the near surface at various scales causing severe kinematic and dynamic distortions of the recorded wavefield. Some of the parameters can be incorporated in the inversion model while others, due to sub-resolution dimensions or unmodeled physics, need to be corrected through data preconditioning; a topic not well described for land data full waveform inversion applications. We have developed novel algorithms and workflows for surface-consistent data preconditioning utilizing the transmitted portion of the wavefield, signal-to-noise enhancement by generation of CMP-based virtual super shot gathers, and robust 1.5D Laplace-Fourier full waveform inversion. Our surface-consistent scheme solves residual kinematic corrections and amplitude anomalies via scalar compensation or deconvolution of the near surface response. Signal-to-noise enhancement is obtained through the statistical evaluation of volumetric prestack responses at the CMP position, or virtual super (shot) gathers. These are inverted via a novel 1.5D acoustic Laplace-Fourier full waveform inversion scheme using the Helmholtz wave equation and Hankel domain forward modeling. Inversion is performed with nonlinear conjugate gradients. The method is applied to a complex structure-controlled wadi area exhibiting faults, dissolution, collapse, and subsidence where the high resolution FWI velocity modeling helps clarifying the geological interpretation. The developed algorithms and automated workflows provide an effective solution for massive full waveform inversion of land seismic data that can be embedded in typical near surface velocity analysis procedures.


Sign in / Sign up

Export Citation Format

Share Document