Simple estimation of linear 1+1 D long wave run-up

2017 ◽  
pp. ggx030 ◽  
Author(s):  
Mauricio Fuentes
Keyword(s):  
Author(s):  
Jun Tang ◽  
Yongming Shen

Coastal vegetation can not only provide shade to coastal structures but also reduce wave run-up. Study of long water wave climb on vegetation beach is fundamental to understanding that how wave run-up may be reduced by planted vegetation along coastline. The present study investigates wave period influence on long wave run-up on a partially-vegetated plane slope via numerical simulation. The numerical model is based on an implementation of Morison’s formulation for rigid structures induced inertia and drag stresses in the nonlinear shallow water equations. The numerical scheme is validated by comparison with experiment results. The model is then applied to investigate long wave with diverse periods propagating and run-up on a partially-vegetated 1:20 plane slope, and the sensitivity of run-up to wave period is investigated based on the numerical results.


1991 ◽  
Vol 229 (-1) ◽  
pp. 675 ◽  
Author(s):  
Philip L.-F. Liu ◽  
Costas E. Synolakis ◽  
Harry H. Yeh

Author(s):  
Marion Tissier ◽  
Jochem Dekkers ◽  
Ad Reniers ◽  
Stuart Pearson ◽  
Ap Van Dongeren

Several studies have reported the development of undular bores over fringing coral reefs (e.g, Gallagher, 1976; Nwogu and Demirbilek, 2010) but the importance of this phenomenon for reef hydrodynamics has never been studied. Yet, the transformation of a long wave (e.g., swell or infragravity wave) into an undular bore leads to significant modifications of the wave field. The formation of undulations is for example associated to a significant increase of the leading bore height. Moreover, if the undulations have enough time to develop (i.e. if the reef flat is wide enough), the initial long wave will ultimately split into a series of solitons (e.g., Grue et al., 2008). All this is likely to affect wave run-up. As reeffronted coastlines are particularly vulnerable to flooding, a good understanding of long wave transformation over the reef flat, including their possible transformation into undular bores, is crucial. In this study, we investigate undular bore development over reef-type profiles based on a series of laboratory experiments. More specifically, we aim to characterize the conditions under which undular bores develop, and analyse how their development affect the hydrodynamics at the toe of the reef-lined beach and the resulting wave run-up.


2012 ◽  
Vol 1 (33) ◽  
pp. 18 ◽  
Author(s):  
Nils Goseberg ◽  
Torsten Schlurmann

This paper reports experimental results of long wave run-up climbing up a 1:40 sloping beach. The resulting maximum run-up is compared with analytical results and a good agreement is found for single sinusoidal waves with uniform wave period and varying amplitude. Subsequently, the interaction with macro-roughness elements on the beach is investigated for different long-shore obstruction ratios. The reduction in wave run-up is expressed by means of a nomogram relating the wave run-up without macro-roughness elements present to those cases where on-land flow is modified by macro-roughness. The presented results mainly focus on a non-staggered and non-rotated macro-roughness configuration. In addition to the run-up reduction, surface elevation profiles on the shore are presented, that address the shock wave generation when the wave tongue approaches the first row of macro-roughness elements.


1984 ◽  
Vol 1 (19) ◽  
pp. 23 ◽  
Author(s):  
Yoshinobu Ogawa ◽  
Nobuo Shuto

Run-up of periodic waves on gentle or non-uniform slopes is discussed. Breaking condition and run-up height of non-breaking waves are derived "by the use of the linear long wave theory in the Lagrangian description. As to the breaking waves, the width of swash zone and the run-up height are-obtained for relatively gentle slopes (less than 1/30), on dividing the transformation of waves into dissipation and swash processes. The formula obtained here agrees with experimental data better than Hunt's formula does. The same procedure is applied to non-uniform slopes and is found to give better results than Saville's composite slope method.


2010 ◽  
Vol 46 (4) ◽  
pp. 530-532 ◽  
Author(s):  
I. I. Didenkulova ◽  
A. V. Sergeeva ◽  
E. N. Pelinovsky ◽  
S. N. Gurbatov

2017 ◽  
Vol 121 ◽  
pp. 158-166 ◽  
Author(s):  
Jun Tang ◽  
Yongming Shen ◽  
Derek M. Causon ◽  
Ling Qian ◽  
Clive G. Mingham

2016 ◽  
Vol 279 ◽  
pp. 187-197 ◽  
Author(s):  
V.V. Garayshin ◽  
M.W. Harris ◽  
D.J. Nicolsky ◽  
E.N. Pelinovsky ◽  
A.V. Rybkin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document