scholarly journals The Importance of a Filament-like Structure in Aerial Dispersal and the Rarefaction Effect of Air Molecules on a Nanoscale Fiber: Detailed Physics in Spiders’ Ballooning

2020 ◽  
Vol 60 (4) ◽  
pp. 864-875 ◽  
Author(s):  
Moonsung Cho ◽  
Iván Santibáñez Koref

Synopsis Many flying insects utilize a membranous structure for flight, which is known as a “wing.” However, some spiders use silk fibers for their aerial dispersal. It is well known that spiders can disperse over hundreds of kilometers and rise several kilometers above the ground in this way. However, little is known about the ballooning mechanisms of spiders, owing to the lack of quantitative data. Recently, Cho et al. discovered previously unknown information on the types and physical properties of spiders’ ballooning silks. According to the data, a crab spider weighing 20 mg spins 50–60 ballooning silks simultaneously, which are about 200 nm thick and 3.22 m long for their flight. Based on these physical dimensions of ballooning silks, the significance of these filament-like structures is explained by a theoretical analysis reviewing the fluid-dynamics of an anisotropic particle (like a filament or a high-slender body). (1) The filament-like structure is materially efficient geometry to produce (or harvest, in the case of passive flight) fluid-dynamic force in a low Reynolds number flow regime. (2) Multiple nanoscale fibers are the result of the physical characteristics of a thin fiber, the drag of which is proportional to its length but not to its diameter. Because of this nonlinear characteristic of a fiber, spinning multiple thin ballooning fibers is, for spiders, a better way to produce drag forces than spinning a single thick spider silk, because spiders can maximize their drag on the ballooning fibers using the same amount of silk dope. (3) The mean thickness of fibers, 200 nm, is constrained by the mechanical strength of the ballooning fibers and the rarefaction effect of air molecules on a nanoscale fiber, because the slip condition on a fiber could predominate if the thickness of the fiber becomes thinner than 100 nm.

2018 ◽  
Vol 115 (45) ◽  
pp. 11507-11512 ◽  
Author(s):  
Lucas R. Parent ◽  
David Onofrei ◽  
Dian Xu ◽  
Dillan Stengel ◽  
John D. Roehling ◽  
...  

Many natural silks produced by spiders and insects are unique materials in their exceptional toughness and tensile strength, while being lightweight and biodegradable–properties that are currently unparalleled in synthetic materials. Myriad approaches have been attempted to prepare artificial silks from recombinant spider silk spidroins but have each failed to achieve the advantageous properties of the natural material. This is because of an incomplete understanding of the in vivo spidroin-to-fiber spinning process and, particularly, because of a lack of knowledge of the true morphological nature of spidroin nanostructures in the precursor dope solution and the mechanisms by which these nanostructures transform into micrometer-scale silk fibers. Herein we determine the physical form of the natural spidroin precursor nanostructures stored within spider glands that seed the formation of their silks and reveal the fundamental structural transformations that occur during the initial stages of extrusion en route to fiber formation. Using a combination of solution phase diffusion NMR and cryogenic transmission electron microscopy (cryo-TEM), we reveal direct evidence that the concentrated spidroin proteins are stored in the silk glands of black widow spiders as complex, hierarchical nanoassemblies (∼300 nm diameter) that are composed of micellar subdomains, substructures that themselves are engaged in the initial nanoscale transformations that occur in response to shear. We find that the established micelle theory of silk fiber precursor storage is incomplete and that the first steps toward liquid crystalline organization during silk spinning involve the fibrillization of nanoscale hierarchical micelle subdomains.


2015 ◽  
pp. 283-323
Author(s):  
Jie-Zhi Wu ◽  
Hui-Yang Ma ◽  
Ming-De Zhou
Keyword(s):  

Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 28
Author(s):  
John Hart ◽  
Jonathan Potts

This paper presents the first scale resolving computational fluid dynamic (CFD) investigation of a geometrically realistic feather shuttlecock with rotation at a high Reynolds number. Rotation was found to reduce the drag coefficient of the shuttlecock. However, the drag coefficient is shown to be independent of the Reynolds number for both rotating and statically fixed shuttlecocks. Particular attention is given to the influence of rotation on the development of flow structures. Rotation is shown to have a clear influence on the formation of flow structures particularly from the feather vanes, and aft of the shuttlecock base. This further raises concerns regarding wind tunnel studies that use traditional experimental sting mounts; typically inserted into this aft region, they have potential to compromise both flow structure and resultant drag forces. As CFD does not necessitate use of a sting with proper application, it has great potential for a detailed study and analysis of shuttlecocks.


1984 ◽  
Vol 106 (1) ◽  
pp. 17-24 ◽  
Author(s):  
K. Ohta ◽  
K. Kagawa ◽  
H. Tanaka ◽  
S. Takahara

This paper presents a method to calculate the critical flow velocity of fluidelastic vibration of tube arrays in heat exchangers. The method is based upon the modal analysis technique, which combines the fluid dynamic force caused by cross flow and the vibration characteristics of the complicated tube array to obtain its response. The analytical method enables us not only to take into account the vibration mode of tube array and nonuniformity of velocity and density distribution of cross flow, but also to estimate the effect of antivibration devices, such as spacer, connecting band, and so on. Numerical examples of constrained single-tube array, multi-tube array in reversed flow, and group of panels with spacers are described.


Volume 3 ◽  
2004 ◽  
Author(s):  
Terukazu Ota ◽  
Isao Tsubura ◽  
Hiroyuki Yoshikawa

Unsteady characteristics of cavitating flow around an inclined rectangular cylinder with a width to height ratio of 8.0 were experimentally investigated for various angles of attack and cavitation numbers. Measurements of fluid dynamic force and surface pressure were made and the cavity configuration was observed with a camera. Especially considered are the self-oscillating unstable flow characteristics along with the time variation of cavity configuration. It is found that a severe vibration occurs at some cavitation number, in which the attached cavity is formed in the separation bubble. As the cavitation number further decreases, the low frequency fluctuation of flow occurs.


2005 ◽  
Vol 2005.2 (0) ◽  
pp. 91-92
Author(s):  
Sayaka YOSHIMURA ◽  
Takahiro YASUDA ◽  
Yasunari TAKANO
Keyword(s):  

2009 ◽  
Vol 38 (7) ◽  
pp. 1361-1368
Author(s):  
Tomohisa Hashimoto ◽  
Koji Morinishi ◽  
Nobuyuki Satofuka

Sign in / Sign up

Export Citation Format

Share Document