Effects of Bragg Scattering on Ultra-Wideband Signal Transmission from Periodic Surfaces

2008 ◽  
Vol E91-B (2) ◽  
pp. 536-542 ◽  
Author(s):  
H. TSUCHIYA ◽  
N. LERTSIRISOPON ◽  
J.-i. TAKADA ◽  
T. KOBAYASHI
2018 ◽  
Vol 1038 ◽  
pp. 012094
Author(s):  
S V Valin ◽  
V A Glukhov ◽  
A V Siasko ◽  
Yu A Tolmachev

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 647
Author(s):  
Sameer Alani ◽  
Zahriladha Zakaria ◽  
Tale Saeidi ◽  
Asmala Ahmad ◽  
Muhammad Ali Imran ◽  
...  

Skin cancer is one of the most widespread and fast growing of all kinds of cancer since it affects the human body easily due to exposure to the Sun’s rays. Microwave imaging has shown better outcomes with higher resolution, faster processing time, mobility, and less cutter and artifact effects. A miniaturized elliptical ultra-wideband (UWB) antenna and its semi-spherical array arrangement were used for signal transmission and reception from the defected locations in the breast skin. Several conditions such as various arrays of three, six, and nine antenna elements, smaller tumor, multi-tumors, and skin on a larger breast sample of 30 cm were considered. To assess the ability of the system, a breast shape container with a diameter of 130 mm and height of 60 mm was 3D printed and then filled with fabricated skin and breast fat to perform the experimental investigation. An improved modified time-reversal algorithm (IMTR) was used to recreate 2D images of tumors with the smallest radius of 1.75 mm in any location within the breast skin. The reconstructed images using both simulated and experimental data verified that the system can be a reliable imaging system for skin cancer diagnosis having a high structural similarity index and resolution.


2008 ◽  
Author(s):  
Shravan Challa ◽  
Atindra Mitra ◽  
Rastko Selmic ◽  
Neven Simicevic

Sign in / Sign up

Export Citation Format

Share Document