dipole antennas
Recently Published Documents


TOTAL DOCUMENTS

720
(FIVE YEARS 115)

H-INDEX

40
(FIVE YEARS 4)

Author(s):  
И.А. Баранников ◽  
Е.А. Ищенко ◽  
С.М. Фёдоров

Рассматривается плазменная вибраторная антенна, которая предназначена для работы в VHF диапазоне на частоте 140 МГц. Вибраторные плазменные антенны отличаются от обычных вибраторных антенн тем, что металлический проводник заменяется плазмой в газоразрядной трубке. Плазменный вибратор, создаваемый разрядом в трубке, способен включаться и выключаться за время порядка микросекунд. Применение плазменной антенны позволяет обеспечить два режима работы: активный, когда плазма индуцирует проводящую поверхность, и скрытый, когда антенна становится практически невидимой для электромагнитных волн, а плазменное облако отсутствует. Для определения характеристик антенны использовалось электродинамическое моделирование. Полученные результаты показывают, что характеристики плазменной вибраторной антенны близки к характеристикам эквивалентного ей металлического диполя, при этом длина плазменной антенны меньше. Для определения эффективности скрытного режима антенны производилось сравнение характеристик эффективной площади рассеяния плазменной антенны с выключенным плазменным облаком и эквивалентного металлического диполя. Полученные результаты показывают, что плазменная антенна обладает высокой эффективностью излучения, диаграммами направленности, схожими с эквивалентной дипольной антенной, и значительно меньшими значениями эффективной площади рассеяния (ЭПР) в выключенном режиме The article discusses a plasma dipole antenna, which is designed to operate in the VHF band at a frequency of 140 MHz. Plasma dipole antennas differ from conventional dipole antennas in that the metal conductor is replaced by plasma in the discharge tube. The plasma dipole created by the discharge in the tube is capable of turning on and off in times of the order of microseconds. The use of a plasma antenna makes it possible to provide two modes of operation: active, when the plasma induces a conductive surface, and hidden, when the antenna becomes practically invisible to electromagnetic waves, and the plasma cloud is absent. We used electrodynamic modeling to determine the characteristics of the antenna. The results show that the characteristics of the plasma dipole antenna are close to those of the equivalent metal dipole, while the length of the plasma antenna is shorter. To determine the efficiency of the hidden mode of the antenna, we compared the characteristics of radar cross-section of the plasma antenna with the plasma cloud turned off and the equivalent metal dipole. The results obtained show that the plasma antenna has a high radiation efficiency, directional patterns similar to an equivalent dipole antenna, and significantly lower RCS values in the off mode


Author(s):  
Chuanbao Du ◽  
Zhitong Cui ◽  
Congguang Mao ◽  
Xin Nie ◽  
Shengquan Zheng ◽  
...  

Author(s):  
Mustafa Hasan ◽  
Nasr Alkhafaji ◽  
Hussam AlAnsary ◽  
Azhar R. Mohsin

Wideband circularly polarized (CP) cross-dipole antennas with flat, cavity and artificial magnetic conductor (AMC) reflectors are proposed. Each proposed antenna consists of a pair of driven dipoles, a pair of vacant-quarter printed rings, and a 50Ω coaxial probe. The boomerang shape has been adopted in the crossed-dipole. This shape makes the design more compact, so it can be a good candidate in the antenna array because of reducing the mutual coupling. All numerical simulation works have been done using the ANSYS electromagnetic (EM) software based on the finite element method (FEM) algorithm. The presented crossed-dipole with a cavity has the best performance compared to ones with conventional flat and AMC grounds. However, the crossed-dipole with the AMC ground is a low-profile structure. Thus, the paper investigates and discusses the results of the proposed strctures thoroughly. The obtained impedance bandwidth (IBW) is 42% (5.1-7.85 GHz) and the axial-ratio bandwidth (ARBW) is 7.72% (5.86-6.32 GHz) for the crossed-dipole with the conventional flat ground (i.e., reflector). Furthermore, the IBW and ARBW for the antenna with the cavity reflector are 50.37% (5.08-8.5 GHz) and 26.4% (5.72-7.46 GHz), respectively. The antenna with the AMC ground has the characterstics of the IBW and ARBW as 38.16% (5.36-7.89 GHz) and 15.16% (5.79-6.74 GHz), respectively. All structures are designed to operate for the C-band and wireless local area networks (WLAN) applications.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2141
Author(s):  
Junghoon Cha ◽  
Choon-Seong Leem ◽  
Ikhwan Kim ◽  
Hakyoung Lee ◽  
Hojun Lee

In this study, we proposed an indoor broadband dual-polarized 2 × 2 MIMO (multiple-input and multiple-output) antenna having dimensions of 240 mm × 200 mm × 40 mm, for application in 5G wireless communication systems. The proposed antenna comprised two vertically polarized circular monopole antennas (CMAs), two horizontally polarized modified rectangular dipole antennas (MRDAs), and a ground plane. The distance between the two MRDAs (MRDA1 and MRDA2) was 70.5 mm and 109.5 mm in the horizontal (x-direction) and 109.5 mm vertical (y-direction) directions, respectively. Conversely, the distance between the two CMAs (CMA1 and CMA2) was 109.5 mm and 70.5 mm in the horizontal (x-direction) and vertical (y-direction) directions, respectively. While the CMAs achieved broadband characteristics owing to the optimal gap between the dielectric and the driven radiator using a parasitic element, the MRDAs achieved broadband owing to the optimal distance between the dipole antennas. The observations in this experiment confirmed that the proposed could operate in the 5G NR n46 (5.15–5.925 GHz), n47 (5.855–5.925 GHz), n77 (3.3–4.2 GHz), n78 (3.3–3.8 GHz), and the n79 (4.4–5 GHz) bands. Moreover, it exhibited a wide impedance bandwidth (dB magnitude of ) of 101% in the 2.3–7 GHz frequency range, high isolation (dB magnitude of ), low envelope coefficient correlation (ECC), gain of over 5 dB, and average radiation efficiency of 87.19%, which verified its suitability for application in sub-6 GHz 5G wireless communication systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Silong Wang ◽  
Yulong Liu ◽  
Terry Tao Ye

UHF RFID tags need to be attached or embedded into various objects. Unlike traditional free-standing antennas, UHF antenna shapes and form factors may vary significantly. There have been no systematic methods that facilitate the design practice of antenna with unconventional shapes. In this paper, using the geometries of 26 English letters (in capital) as examples, we explore the general methodology of shape-specific antenna design. More specifically, we show that 26 letter geometries can be categorized into 9 groups, and the antennas in each group can be divided and conquered into standard baseline geometries. Through prototypes and measurements, we demonstrate that each letter-shaped antenna, although exhibiting different gains and radiations, can achieve satisfactory performance, as compared to standard UHF dipole antennas. Specifically, letters “M” and “J” achieve the longest reading range of more than 20 meters with a good radiation pattern, which is comparable or even better than many commercial UHF RFID tags.


Sign in / Sign up

Export Citation Format

Share Document