scholarly journals On the Maximal Rate of Convergence Under the Ricci Flow

Author(s):  
Brett Kotschwar

Abstract We estimate from above the rate at which a solution to the normalized Ricci flow on a closed manifold may converge to a limit soliton. Our main result implies that any solution that converges modulo diffeomorphisms to a soliton faster than any fixed exponential rate must itself be self-similar.

1976 ◽  
Vol 13 (04) ◽  
pp. 733-740
Author(s):  
N. Veraverbeke ◽  
J. L. Teugels

Let Gn (x) be the distribution of the nth successive maximum of a random walk on the real line. Under conditions typical for complete exponential convergence, the decay of Gn (x) – limn→∞ Gn (x) is asymptotically equal to H(x) γn n–3/2 as n → ∞where γ < 1 and H(x) a function solely depending on x. For the case of drift to + ∞, G ∞(x) = 0 and the result is new; for drift to – ∞we give a new proof, simplifying and correcting an earlier version in [9].


2017 ◽  
Vol 59 (3) ◽  
pp. 743-751
Author(s):  
SHOUWEN FANG ◽  
FEI YANG ◽  
PENG ZHU

AbstractLet (M, g(t)) be a compact Riemannian manifold and the metric g(t) evolve by the Ricci flow. In the paper, we prove that the eigenvalues of geometric operator −Δφ + $\frac{R}{2}$ are non-decreasing under the Ricci flow for manifold M with some curvature conditions, where Δφ is the Witten Laplacian operator, φ ∈ C2(M), and R is the scalar curvature with respect to the metric g(t). We also derive the evolution of eigenvalues under the normalized Ricci flow. As a consequence, we show that compact steady Ricci breather with these curvature conditions must be trivial.


1976 ◽  
Vol 13 (4) ◽  
pp. 733-740 ◽  
Author(s):  
N. Veraverbeke ◽  
J. L. Teugels

Let Gn (x) be the distribution of the nth successive maximum of a random walk on the real line. Under conditions typical for complete exponential convergence, the decay of Gn (x) – limn→∞ Gn(x) is asymptotically equal to H(x) γn n–3/2 as n → ∞where γ < 1 and H(x) a function solely depending on x. For the case of drift to + ∞, G∞(x) = 0 and the result is new; for drift to – ∞we give a new proof, simplifying and correcting an earlier version in [9].


1975 ◽  
Vol 12 (02) ◽  
pp. 279-288 ◽  
Author(s):  
N. Veraverbeke ◽  
J. L. Teugels

Let Gn (x) be the distribution function of the maximum of the successive partial sums of independent and identically distributed random variables and G(x) its limiting distribution function. Under conditions, typical for complete exponential convergence, the decay of Gn (x) — G(x) is asymptotically equal to c.H(x)n −3/2 γn as n → ∞ where c and γ are known constants and H(x) is a function solely depending on x.


1982 ◽  
Vol 18 (4) ◽  
pp. 343-348 ◽  
Author(s):  
Zenta IWAI ◽  
Makoto SATO ◽  
Akira INOUE ◽  
Kazuo MANO

2020 ◽  
Vol 17 (06) ◽  
pp. 2050094 ◽  
Author(s):  
Fatemah Mofarreh ◽  
Akram Ali ◽  
Wan Ainun Mior Othman

In this paper, we prove that a simply connected Lagrangian submanifold in the generalized complex space form is diffeomorphic to standard sphere [Formula: see text] and the normalized Ricci flow converges to a constant curvature metric, provided its squared norm of the second fundamental form satisfies some upper bound depending only on the squared norm of the mean curvature vector field, the constant sectional curvature, and the dimension of the Lagrangian immersion of the ambient space. Next, we conclude that stable currents do not exist and homology groups vanish in a compact real submanifold of the general complex space form, provided that the second fundamental form satisfies some extrinsic conditions. We show that our results improve some previous results.


Geometry ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Christian Hilaire

We show that, given an immortal solution to the Ricci flow on a closed manifold with uniformly bounded curvature and diameter, the Ricci tensor goes to zero as . We also show that if there exists an immortal solution on a closed 3-dimensional manifold such that the product of the curvature and the square of the diameter is uniformly bounded, then this solution must be of type III.


Bernoulli ◽  
2015 ◽  
Vol 21 (3) ◽  
pp. 1844-1854 ◽  
Author(s):  
Anna De Masi ◽  
Errico Presutti ◽  
Dimitrios Tsagkarogiannis ◽  
Maria Eulalia Vares

Sign in / Sign up

Export Citation Format

Share Document