scholarly journals A Trace Formula for the Quantization of Coadjoint Orbits

2015 ◽  
Vol 2015 (21) ◽  
pp. 11236-11252
Author(s):  
Damien Calaque ◽  
Florian Naef
2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Fridrich Valach ◽  
Donald R. Youmans

Abstract We give an interpretation of the holographic correspondence between two-dimensional BF theory on the punctured disk with gauge group PSL(2, ℝ) and Schwarzian quantum mechanics in terms of a Drinfeld-Sokolov reduction. The latter, in turn, is equivalent to the presence of certain edge states imposing a first class constraint on the model. The constrained path integral localizes over exceptional Virasoro coadjoint orbits. The reduced theory is governed by the Schwarzian action functional generating a Hamiltonian S1-action on the orbits. The partition function is given by a sum over topological sectors (corresponding to the exceptional orbits), each of which is computed by a formal Duistermaat-Heckman integral.


2021 ◽  
pp. 108997
Author(s):  
Quanlei Fang ◽  
Yi Wang ◽  
Jingbo Xia
Keyword(s):  

2015 ◽  
Vol 148 ◽  
pp. 398-428 ◽  
Author(s):  
D. Grob ◽  
R.S. Kraußhar

2015 ◽  
Vol 17 (06) ◽  
pp. 1550069
Author(s):  
P. Bantay

We present a formula for vector-valued modular forms, expressing the value of the Hilbert-polynomial of the module of holomorphic forms evaluated at specific arguments in terms of traces of representation matrices, restricting the weight distribution of the free generators.


2006 ◽  
Vol 84 (10) ◽  
pp. 891-904
Author(s):  
J R Schmidt

The Kahler geometry of minimal coadjoint orbits of classical Lie groups is exploited to construct Darboux coordinates, a symplectic two-form and a Lie–Poisson structure on the dual of the Lie algebra. Canonical transformations cast the generators of the dual into Dyson or Holstein–Primakoff representations.PACS Nos.: 02.20.Sv, 02.30.Ik, 02.40.Tt


1996 ◽  
Vol 24 (3) ◽  
pp. 285-297 ◽  
Author(s):  
A. Mohapatra ◽  
Kakyan B. Sinha

Sign in / Sign up

Export Citation Format

Share Document