scholarly journals Branched Holomorphic Cartan Geometries and Calabi–Yau Manifolds

2018 ◽  
Vol 2019 (23) ◽  
pp. 7428-7458 ◽  
Author(s):  
Indranil Biswas ◽  
Sorin Dumitrescu

Abstract We introduce the concept of a branched holomorphic Cartan geometry. It generalizes to higher dimension the definition of branched (flat) complex projective structure on a Riemann surface introduced by Mandelbaum [25]. This new framework is much more flexible than that of the usual holomorphic Cartan geometries. We show that all compact complex projective manifolds admit a branched flat holomorphic projective structure. We also give an example of a non-flat branched holomorphic normal projective structure on a compact complex surface. It is known that no compact complex surface admits such a structure with empty branching locus. We prove that non-projective compact simply connected Kähler Calabi–Yau manifolds do not admit any branched holomorphic projective structure. The key ingredient of its proof is the following result of independent interest: if E is a holomorphic vector bundle over a compact simply connected Kähler Calabi–Yau manifold and E admits a holomorphic connection, then E is a trivial holomorphic vector bundle and any holomorphic connection on E is trivial.

2015 ◽  
Vol 26 (05) ◽  
pp. 1550029
Author(s):  
Yasha Savelyev

We study a smooth analogue of jumping curves of a holomorphic vector bundle, and use Yang–Mills theory over S2 to show that any non-trivial, smooth Hermitian vector bundle E over a smooth simply connected manifold, must have such curves. This is used to give new examples complex manifolds for which a non-trivial holomorphic vector bundle must have jumping curves in the classical sense (when c1(E) is zero). We also use this to give a new proof of a theorem of Gromov on the norm of curvature of unitary connections, and make the theorem slightly sharper. Lastly we define a sequence of new non-trivial integer invariants of smooth manifolds, connected to this theory of smooth jumping curves, and make some computations of these invariants. Our methods include an application of the recently developed Morse–Bott chain complex for the Yang–Mills functional over S2.


Author(s):  
Paula Tretkoff

This chapter discusses the free 2-ball quotients arising as finite covers of the projective plane branched along line arrangements. It first considers a surface X obtained by blowing up the singular intersection points of a linear arrangement in the complex projective plane, as well as a smooth compact complex surface Y that is a finite covering of X. If Y is of general type with vanishing proportionality deviation, then it is a free 2-ball quotient. The chapter then looks at line arrangements that have equal ramification indices along each of the proper transforms of the original lines, along with cases of blowing down rational curves and removing elliptic curves. It also enumerates all possibilities for the assigned weights of the arrangements, under the assumption that divisors of negative or infinite weight on the blown-up line arrangements do not intersect.


1969 ◽  
Vol 12 (4) ◽  
pp. 457-460 ◽  
Author(s):  
K. Srinivasacharyulu

Topology of positively curved compact Kähler manifolds had been studied by several authors (cf. [6; 2]); these manifolds are simply connected and their second Betti number is one [1]. We will restrict ourselves to the study of some compact homogeneous Kähler manifolds. The aim of this paper is to supplement some results in [9]. We prove, among other results, that a compact, simply connected homogeneous complex manifold whose Euler number is a prime p ≥ 2 is isomorphic to the complex projective space Pp-1 (C); in the p-1 case of surfaces, we prove that a compact, simply connected, homogeneous almost complex surface with Euler-Poincaré characteristic positive, is hermitian symmetric.


2008 ◽  
Vol 144 (3) ◽  
pp. 582-632 ◽  
Author(s):  
L. Katzarkov ◽  
T. Pantev ◽  
B. Toën

AbstractWe use Hodge theoretic methods to study homotopy types of complex projective manifolds with arbitrary fundamental groups. The main tool we use is the schematization functor$X \mapsto (X\otimes \mathbb {C})^{\mathrm {sch}}$, introduced by the third author as a substitute for the rationalization functor in homotopy theory in the case of non-simply connected spaces. Our main result is the construction of a Hodge decomposition on $(X\otimes \mathbb {C})^{\mathrm {sch}}$. This Hodge decomposition is encoded in an action of the discrete group $\mathbb {C}^{\times \delta }$ on the object $(X\otimes \mathbb {C})^{\mathrm {sch}}$ and is shown to recover the usual Hodge decomposition on cohomology, the Hodge filtration on the pro-algebraic fundamental group, and, in the simply connected case, the Hodge decomposition on the complexified homotopy groups. We show that our Hodge decomposition satisfies a purity property with respect to a weight filtration, generalizing the fact that the higher homotopy groups of a simply connected projective manifold have natural mixed Hodge structures. As applications we construct new examples of homotopy types which are not realizable as complex projective manifolds and we prove a formality theorem for the schematization of a complex projective manifold.


2021 ◽  
Vol 8 (1) ◽  
pp. 208-222
Author(s):  
Georges Dloussky

Abstract Let S be a compact complex surface in class VII0 + containing a cycle of rational curves C = ∑Dj . Let D = C + A be the maximal connected divisor containing C. If there is another connected component of curves C ′ then C ′ is a cycle of rational curves, A = 0 and S is a Inoue-Hirzebruch surface. If there is only one connected component D then each connected component Ai of A is a chain of rational curves which intersects a curve Dj of the cycle and for each curve Dj of the cycle there at most one chain which meets Dj . In other words, we do not prove the existence of curves other those of the cycle C, but if some other curves exist the maximal divisor looks like the maximal divisor of a Kato surface with perhaps missing curves. The proof of this topological result is an application of Donaldson theorem on trivialization of the intersection form and of deformation theory. We apply this result to show that a twisted logarithmic 1-form has a trivial vanishing divisor.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Maurizio Parton ◽  
Paolo Piccinni

AbstractTheHermitian symmetric spaceM = EIII appears in the classification of complete simply connected Riemannian manifolds carrying a parallel even Clifford structure [19]. This means the existence of a real oriented Euclidean vector bundle E over it together with an algebra bundle morphism φ : Cl


2017 ◽  
Vol Volume 1 ◽  
Author(s):  
Stéphane Druel

In this article, we first describe codimension two regular foliations with numerically trivial canonical class on complex projective manifolds whose canonical class is not numerically effective. Building on a recent algebraicity criterion for leaves of algebraic foliations, we then address regular foliations of small rank with numerically trivial canonical class on complex projective manifolds whose canonical class is pseudo-effective. Finally, we confirm the generalized Bondal conjecture formulated by Beauville in some special cases. Comment: 20 pages


2002 ◽  
Vol 90 (2) ◽  
pp. 180
Author(s):  
Christina W. Tønnesen-Friedman

It is shown that if a minimal ruled surface $\mathrm{P}(E) \rightarrow \Sigma$ admits a Kähler Yamabe minimizer, then this metric is generalized Kähler-Einstein and the holomorphic vector bundle $E$ is quasi-stable.


2017 ◽  
Vol 153 (7) ◽  
pp. 1349-1371 ◽  
Author(s):  
Eduard Looijenga

Let $X$ be an irreducible complex-analytic variety, ${\mathcal{S}}$ a stratification of $X$ and ${\mathcal{F}}$ a holomorphic vector bundle on the open stratum ${X\unicode[STIX]{x0030A}}$. We give geometric conditions on ${\mathcal{S}}$ and ${\mathcal{F}}$ that produce a natural lift of the Chern class $\operatorname{c}_{k}({\mathcal{F}})\in H^{2k}({X\unicode[STIX]{x0030A}};\mathbb{C})$ to $H^{2k}(X;\mathbb{C})$, which, in the algebraic setting, is of Hodge level ${\geqslant}k$. When applied to the Baily–Borel compactification $X$ of a locally symmetric variety ${X\unicode[STIX]{x0030A}}$ and an automorphic vector bundle ${\mathcal{F}}$ on ${X\unicode[STIX]{x0030A}}$, this refines a theorem of Goresky–Pardon. In passing we define a class of simplicial resolutions of the Baily–Borel compactification that can be used to define its mixed Hodge structure. We use this to show that the stable cohomology of the Satake ($=$ Baily–Borel) compactification of ${\mathcal{A}}_{g}$ contains nontrivial Tate extensions.


Sign in / Sign up

Export Citation Format

Share Document