scholarly journals The Logical Complexity of Finitely Generated Commutative Rings

2018 ◽  
Vol 2020 (1) ◽  
pp. 112-166 ◽  
Author(s):  
Matthias Aschenbrenner ◽  
Anatole Khélif ◽  
Eudes Naziazeno ◽  
Thomas Scanlon

AbstractWe characterize those finitely generated commutative rings which are (parametrically) bi-interpretable with arithmetic: a finitely generated commutative ring A is bi-interpretable with $(\mathbb{N},{+},{\times })$ if and only if the space of non-maximal prime ideals of A is nonempty and connected in the Zariski topology and the nilradical of A has a nontrivial annihilator in $\mathbb{Z}$. Notably, by constructing a nontrivial derivation on a nonstandard model of arithmetic we show that the ring of dual numbers over $\mathbb{Z}$ is not bi-interpretable with $\mathbb{N}$.

2018 ◽  
Vol 26 (4) ◽  
pp. 277-283
Author(s):  
Yasushige Watase

Summary We formalize in the Mizar system [3], [4] basic definitions of commutative ring theory such as prime spectrum, nilradical, Jacobson radical, local ring, and semi-local ring [5], [6], then formalize proofs of some related theorems along with the first chapter of [1]. The article introduces the so-called Zariski topology. The set of all prime ideals of a commutative ring A is called the prime spectrum of A denoted by Spectrum A. A new functor Spec generates Zariski topology to make Spectrum A a topological space. A different role is given to Spec as a map from a ring morphism of commutative rings to that of topological spaces by the following manner: for a ring homomorphism h : A → B, we defined (Spec h) : Spec B → Spec A by (Spec h)(𝔭) = h−1(𝔭) where 𝔭 2 Spec B.


Filomat ◽  
2017 ◽  
Vol 31 (10) ◽  
pp. 2933-2941 ◽  
Author(s):  
Unsal Tekir ◽  
Suat Koc ◽  
Kursat Oral

In this paper, we present a new classes of ideals: called n-ideal. Let R be a commutative ring with nonzero identity. We define a proper ideal I of R as an n-ideal if whenever ab ? I with a ? ?0, then b ? I for every a,b ? R. We investigate some properties of n-ideals analogous with prime ideals. Also, we give many examples with regard to n-ideals.


2019 ◽  
Vol 13 (07) ◽  
pp. 2050121
Author(s):  
M. Aijaz ◽  
S. Pirzada

Let [Formula: see text] be a commutative ring with unity [Formula: see text]. The annihilating-ideal graph of [Formula: see text], denoted by [Formula: see text], is defined to be the graph with vertex set [Formula: see text] — the set of non-zero annihilating ideals of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] adjacent if and only if [Formula: see text]. Some connections between annihilating-ideal graphs and zero divisor graphs are given. We characterize the prime ideals (or equivalently maximal ideals) of [Formula: see text] in terms of their degrees as vertices of [Formula: see text]. We also obtain the metric dimension of annihilating-ideal graphs of commutative rings.


Author(s):  
Rasul Mohammadi ◽  
Ahmad Moussavi ◽  
Masoome Zahiri

Let [Formula: see text] be an associative ring with identity. A right [Formula: see text]-module [Formula: see text] is said to have Property ([Formula: see text]), if each finitely generated ideal [Formula: see text] has a nonzero annihilator in [Formula: see text]. Evans [Zero divisors in Noetherian-like rings, Trans. Amer. Math. Soc. 155(2) (1971) 505–512.] proved that, over a commutative ring, zero-divisor modules have Property ([Formula: see text]). We study and construct various classes of modules with Property ([Formula: see text]). Following Anderson and Chun [McCoy modules and related modules over commutative rings, Comm. Algebra 45(6) (2017) 2593–2601.], we introduce [Formula: see text]-dual McCoy modules and show that, for every strictly totally ordered monoid [Formula: see text], faithful symmetric modules are [Formula: see text]-dual McCoy. We then use this notion to give a characterization for modules with Property ([Formula: see text]). For a faithful symmetric right [Formula: see text]-module [Formula: see text] and a strictly totally ordered monoid [Formula: see text], it is proved that the right [Formula: see text]-module [Formula: see text] is primal if and only if [Formula: see text] is primal with Property ([Formula: see text]).


2007 ◽  
Vol 06 (04) ◽  
pp. 671-685 ◽  
Author(s):  
K. VARADARAJAN

We give a complete characterization of the class of commutative rings R possessing the property that Spec(R) is weakly 0-dimensional. They turn out to be the same as strongly π-regular rings. We considerably strengthen the results of K. Samei [13] tying up cleanness of R with the zero dimensionality of Max(R) in the Zariski topology. In the class of rings C(X), W. Wm Mc Govern [6] has characterized potent rings as the ones with X admitting a clopen π-base. We prove the analogous result for any commutative ring in terms of the Zariski topology on Max(R). Mc Govern also introduced the concept of an almost clean ring and proved that C(X) is almost clean if and only if it is clean. We prove a similar result for all Gelfand rings R with J(R) = 0.


1991 ◽  
Vol 56 (1) ◽  
pp. 67-70 ◽  
Author(s):  
Kostas Hatzikiriakou

We assume that the reader is familiar with the program of “reverse mathematics” and the development of countable algebra in subsystems of second order arithmetic. The subsystems we are using in this paper are RCA0, WKL0 and ACA0. (The reader who wants to learn about them should study [1].) In [1] it was shown that the statement “Every countable commutative ring has a prime ideal” is equivalent to Weak Konig's Lemma over RCA0, while the statement “Every countable commutative ring has a maximal ideal” is equivalent to Arithmetic Comprehension over RCA0. Our main result in this paper is that the statement “Every countable commutative ring has a minimal prime ideal” is equivalent to Arithmetic Comprehension over RCA0. Minimal prime ideals play an important role in the study of countable commutative rings; see [2, pp. 1–7].


Author(s):  
R. Y. Sharp

In 5, I provided a method whereby the study of an Artinian module A over a commutative ring R (throughout the paper, R will denote a commutative ring with identity) can, for some purposes at least, be reduced to the study of an Artinian module A' over a complete (Noetherian) local ring; in the latter situation, Matlis' duality 1 (alternatively, see 6, ch. 5) is available, and this means that the investigation can often be converted into a dual one about a finitely generated module over a complete (Noetherian) local ring.


Filomat ◽  
2018 ◽  
Vol 32 (10) ◽  
pp. 3657-3665
Author(s):  
Habibollah Ansari-Toroghy ◽  
Shokoufeh Habibi ◽  
Masoomeh Hezarjaribi

Let M be a module over a commutative ring R. In this paper, we continue our study about the quasi-Zariski topology-graph G(?*T) which was introduced in (On the graph of modules over commutative rings, Rocky Mountain J. Math. 46(3) (2016), 1-19). For a non-empty subset T of Spec(M), we obtain useful characterizations for those modules M for which G(?*T) is a bipartite graph. Also, we prove that if G(?*T) is a tree, then G(?*T) is a star graph. Moreover, we study coloring of quasi-Zariski topology-graphs and investigate the interplay between ?(G(?+T)) and ?(G(?+T)).


2020 ◽  
Vol 32 (1) ◽  
pp. 235-267 ◽  
Author(s):  
Michal Hrbek ◽  
Jan Šťovíček

AbstractWe classify all tilting classes over an arbitrary commutative ring via certain sequences of Thomason subsets of the spectrum, generalizing the classification for noetherian commutative rings by Angeleri, Pospíšil, ŠÅ¥ovíček and Trlifaj (2014). We show that the n-tilting classes can equivalently be expressed as classes of all modules vanishing in the first n degrees of one of the following homology theories arising from a finitely generated ideal: {\operatorname{Tor}_{*}(R/I,-)}, Koszul homology, Čech homology, or local homology (even though in general none of those theories coincide). Cofinite-type n-cotilting classes are described by vanishing of the corresponding cohomology theories. For any cotilting class of cofinite type, we also construct a corresponding cotilting module, generalizing the construction of Šťovíček, Trlifaj and Herbera (2014). Finally, we characterize cotilting classes of cofinite type amongst the general ones, and construct new examples of n-cotilting classes not of cofinite type, which are in a sense hard to tell apart from those of cofinite type.


1978 ◽  
Vol 21 (3) ◽  
pp. 373-375 ◽  
Author(s):  
Ira J. Papick

Throughout this note, let R be a (commutative integral) domain with quotient field K. A domain S satisfying R ⊆ S ⊆ K is called an overring of R, and by dimension of a ring we mean Krull dimension. Recall [1] that a commutative ring is said to be coherent if each finitely generated ideal is finitely presented.In [2], as a corollary of a more general theorem, Davis showed that if each overring of a domain R is Noetherian, then the dimension of R is at most 1. (This corollary is the converse of a version of the Krull-Akizuki Theorem [5, Theorem 93], and can also be proved directly by using the existence of valuation rings dominating finite chains of prime ideals [4, Corollary 16.6].) It is our purpose to prove that if R is Noetherian and each overring of R is coherent, then the dimension of £ is at most 1. We shall also indicate some related questions and examples.


Sign in / Sign up

Export Citation Format

Share Document