scholarly journals Smooth Compactness for Spaces of Asymptotically Conical Self-Expanders of Mean Curvature Flow

Author(s):  
Jacob Bernstein ◽  
Lu Wang

Abstract We show compactness in the locally smooth topology for certain natural families of asymptotically conical self-expanding solutions of mean curvature flow. Specifically, we show such compactness for the set of all 2D self-expanders of a fixed topological type and, in all dimensions, for the set of self-expanders of low entropy and for the set of mean convex self-expanders with strictly mean convex asymptotic cones. From this we deduce that the natural projection map from the space of parameterizations of asymptotically conical self-expanders to the space of parameterizations of the asymptotic cones is proper for these classes.

2016 ◽  
Vol 2 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Theodora Bourni ◽  
Mat Langford

AbstractWe show that any strictly mean convex translator of dimension n ≥ 3 which admits a cylindrical estimate and a corresponding gradient estimate is rotationally symmetric. As a consequence, we deduce that any translating solution of the mean curvature flow which arises as a blow-up limit of a two-convex mean curvature flow of compact immersed hypersurfaces of dimension n ≥ 3 is rotationally symmetric. The proof is rather robust, and applies to a more general class of translator equations. As a particular application, we prove an analogous result for a class of flows of embedded hypersurfaces which includes the flow of twoconvex hypersurfaces by the two-harmonic mean curvature.


Author(s):  
Knut Smoczyk

AbstractWe study self-expanding solutions $M^{m}\subset \mathbb {R}^{n}$ M m ⊂ ℝ n of the mean curvature flow. One of our main results is, that complete mean convex self-expanding hypersurfaces are products of self-expanding curves and flat subspaces, if and only if the function |A|2/|H|2 attains a local maximum, where A denotes the second fundamental form and H the mean curvature vector of M. If the principal normal ξ = H/|H| is parallel in the normal bundle, then a similar result holds in higher codimension for the function |Aξ|2/|H|2, where Aξ is the second fundamental form with respect to ξ. As a corollary we obtain that complete mean convex self-expanders attain strictly positive scalar curvature, if they are smoothly asymptotic to cones of non-negative scalar curvature. In particular, in dimension 2 any mean convex self-expander that is asymptotic to a cone must be strictly convex.


2010 ◽  
Vol 267 (3-4) ◽  
pp. 535-547 ◽  
Author(s):  
J. Clutterbuck ◽  
O. C. Schnürer

Sign in / Sign up

Export Citation Format

Share Document