scholarly journals Self-Expanders of the Mean Curvature Flow

Author(s):  
Knut Smoczyk

AbstractWe study self-expanding solutions $M^{m}\subset \mathbb {R}^{n}$ M m ⊂ ℝ n of the mean curvature flow. One of our main results is, that complete mean convex self-expanding hypersurfaces are products of self-expanding curves and flat subspaces, if and only if the function |A|2/|H|2 attains a local maximum, where A denotes the second fundamental form and H the mean curvature vector of M. If the principal normal ξ = H/|H| is parallel in the normal bundle, then a similar result holds in higher codimension for the function |Aξ|2/|H|2, where Aξ is the second fundamental form with respect to ξ. As a corollary we obtain that complete mean convex self-expanders attain strictly positive scalar curvature, if they are smoothly asymptotic to cones of non-negative scalar curvature. In particular, in dimension 2 any mean convex self-expander that is asymptotic to a cone must be strictly convex.

2020 ◽  
Vol 102 (1) ◽  
pp. 162-171
Author(s):  
ZHENGCHAO JI

We prove rigidity theorems for ancient solutions of geometric flows of immersed submanifolds. Specifically, we find conditions on the second fundamental form that characterise the shrinking sphere among compact ancient solutions for the mean curvature flow in codimension two surfaces.


2020 ◽  
Vol 18 (1) ◽  
pp. 1518-1530
Author(s):  
Xuesen Qi ◽  
Ximin Liu

Abstract In this paper, we discuss the monotonicity of the first nonzero eigenvalue of the Laplace operator and the p-Laplace operator under a forced mean curvature flow (MCF). By imposing conditions associated with the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced MCF, and some special pinching conditions on the second fundamental form of the initial hypersurface, we prove that the first nonzero closed eigenvalues of the Laplace operator and the p-Laplace operator are monotonic under the forced MCF, respectively, which partially generalize Mao and Zhao’s work. Moreover, we give an example to specify applications of conclusions obtained above.


Author(s):  
Chongzhen Ouyang ◽  
Zhenqi Li

AbstractThis paper investigates complete space-like submainfold with parallel mean curvature vector in the de Sitter space. Some pinching theorems on square of the norm of the second fundamental form are given


2020 ◽  
Vol 31 (08) ◽  
pp. 2050061
Author(s):  
Shujing Pan

Suppose that [Formula: see text] is a product of compact Riemann surfaces [Formula: see text],[Formula: see text], i.e. [Formula: see text], and [Formula: see text] is a graph in [Formula: see text] of a strictly area dereasing map [Formula: see text]. Let [Formula: see text] evolve along the Kähler–Ricci flow, and [Formula: see text] in [Formula: see text] evolve along the mean curvature flow. We show that [Formula: see text] remains to be a graph of a strictly area decreasing map along the Kähler–Ricci mean curvature flow and exists for all time. In the positive scalar curvature case, we prove the convergence of the flow and the curvature decay along the flow at infinity.


2011 ◽  
Vol 54 (1) ◽  
pp. 67-75 ◽  
Author(s):  
QIN ZHANG

AbstractLet Mn be an n-dimensional closed hypersurface with constant mean curvature H satisfying |H| ≤ ϵ(n) in a unit sphere Sn+1(1), n ≤ 8 and S the square of the length of the second fundamental form of M. There exists a constant δ(n, H) > 0, which depends only on n and H such that if S0 ≤ S ≤ S0 + δ(n, H), then S ≡ S0 and M is isometric to a Clifford hypersurface, where ϵ(n) is a sufficiently small constant depending on n and $S_0=n+\frac{n^3}{2(n-1)}H^2+\frac{n(n-2)}{2(n-1)}\sqrt{n^2H^4+4(n-1)H^2}$.


2016 ◽  
Vol 2 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Theodora Bourni ◽  
Mat Langford

AbstractWe show that any strictly mean convex translator of dimension n ≥ 3 which admits a cylindrical estimate and a corresponding gradient estimate is rotationally symmetric. As a consequence, we deduce that any translating solution of the mean curvature flow which arises as a blow-up limit of a two-convex mean curvature flow of compact immersed hypersurfaces of dimension n ≥ 3 is rotationally symmetric. The proof is rather robust, and applies to a more general class of translator equations. As a particular application, we prove an analogous result for a class of flows of embedded hypersurfaces which includes the flow of twoconvex hypersurfaces by the two-harmonic mean curvature.


2020 ◽  
Vol 31 (05) ◽  
pp. 2050035
Author(s):  
Yong Luo ◽  
Hongbing Qiu

By using the integral method, we prove a rigidity theorem for spacelike self-shrinkers in pseudo-Euclidean space under a minor growth condition in terms of the mean curvature and the second fundamental form, which generalizes Theorem 1.1 in [H. Q. Liu and Y. L. Xin, Some Results on Space-Like Self-Shrinkers, Acta Math. Sin. (Engl. Ser.) 32(1) (2016) 69–82].


2018 ◽  
Vol 29 (01) ◽  
pp. 1850006 ◽  
Author(s):  
Xiaoli Han ◽  
Jiayu Li ◽  
Liang Zhao

Let [Formula: see text] be a Kähler surface, and [Formula: see text] an immersed surface in [Formula: see text]. The Kähler angle of [Formula: see text] in [Formula: see text] is introduced by Chern and Wolfson [Am. J. Math. 105 (1983) 59–83]. Let [Formula: see text] evolve along the Kähler–Ricci flow, and [Formula: see text] in [Formula: see text] evolve along the mean-curvature flow. We show that the Kähler angle [Formula: see text] satisfies the evolution equation [Formula: see text] where [Formula: see text] is the scalar curvature of [Formula: see text]. The equation implies that if the initial surface is symplectic (Lagrangian), then, along the flow, [Formula: see text] is always symplectic (Lagrangian) at each time [Formula: see text], which we call a symplectic (Lagrangian) Kähler–Ricci mean-curvature flow. In this paper, we mainly study the symplectic Kähler–Ricci mean-curvature flow.


2011 ◽  
Vol 22 (01) ◽  
pp. 131-143 ◽  
Author(s):  
GANGYI CHEN ◽  
HAIZHONG LI

Let M be an n-dimensional closed hypersurface with constant mean curvature H in a unit sphere Sn+1, n ≤ 8, and S the squared length of the second fundamental form of M. If |H| ≤ ε(n), then there exists a positive constant α(n, H), which depends only on n and H, such that if S0 ≤ S ≤ S0 + α(n, H), then S ≡ S0 and M is isometric to a Clifford hypersurface, where ε(n) is a positive constant depending only on n and [Formula: see text].


Author(s):  
Stephen Lynch ◽  
Huy The Nguyen

AbstractWe study solutions of high codimension mean curvature flow defined for all negative times, usually referred to as ancient solutions. We show that any compact ancient solution whose second fundamental form satisfies a certain natural pinching condition must be a family of shrinking spheres. Andrews and Baker (J Differ Geom 85(3):357–395, 2010) have shown that initial submanifolds satisfying this pinching condition, which generalises the notion of convexity, converge to round points under the flow. As an application, we use our result to simplify their proof.


Sign in / Sign up

Export Citation Format

Share Document