K3 surfaces from configurations of six lines in $\mathbb{P}^{2}$ and mirror symmetry II—$\lambda _{K3}$-functions

Author(s):  
Shinobu Hosono ◽  
Bong H Lian ◽  
Shing-Tung Yau

Abstract We continue our study on the hypergeometric system $E(3,6)$ that describes period integrals of the double cover family of K3 surfaces. Near certain special boundary points in the moduli space of the K3 surfaces, we construct the local solutions and determine the so-called mirror maps expressing them in terms of genus 2 theta functions. These mirror maps are the K3 analogues of the elliptic $\lambda $-function. We find that there are two nonisomorphic definitions of the lambda functions corresponding to a flip in the moduli space. We also discuss mirror symmetry for the double cover K3 surfaces and their higher dimensional generalizations. A follow-up paper will describe more details of the latter.


2021 ◽  
Vol 64 (1) ◽  
pp. 99-127
Author(s):  
Han-Bom Moon ◽  
Luca Schaffler

We describe a compactification by KSBA stable pairs of the five-dimensional moduli space of K3 surfaces with a purely non-symplectic automorphism of order four and $U(2)\oplus D_4^{\oplus 2}$ lattice polarization. These K3 surfaces can be realized as the minimal resolution of the double cover of $\mathbb {P}^{1}\times \mathbb {P}^{1}$ branched along a specific $(4,\,4)$ curve. We show that, up to a finite group action, this stable pairs compactification is isomorphic to Kirwan's partial desingularization of the GIT quotient $(\mathbb {P}^{1})^{8}{/\!/}\mathrm {SL}_2$ with the symmetric linearization.



2021 ◽  
Vol 9 ◽  
Author(s):  
L. Göttsche ◽  
M. Kool ◽  
R. A. Williams

Abstract We conjecture a Verlinde type formula for the moduli space of Higgs sheaves on a surface with a holomorphic 2-form. The conjecture specializes to a Verlinde formula for the moduli space of sheaves. Our formula interpolates between K-theoretic Donaldson invariants studied by Göttsche and Nakajima-Yoshioka and K-theoretic Vafa-Witten invariants introduced by Thomas and also studied by Göttsche and Kool. We verify our conjectures in many examples (for example, on K3 surfaces).



2021 ◽  
Vol 21 (2) ◽  
pp. 221-225
Author(s):  
Taro Hayashi

Abstract General K3 surfaces obtained as double covers of the n-th Hirzebruch surfaces with n = 0, 1, 4 are not double covers of other smooth surfaces. We give a criterion for such a K3 surface to be a double covering of another smooth rational surface based on the branch locus of double covers and fibre spaces of Hirzebruch surfaces.



Author(s):  
KENNETH ASCHER ◽  
KRISTIN DEVLEMING ◽  
YUCHEN LIU

Abstract We show that the K-moduli spaces of log Fano pairs $\left(\mathbb {P}^1\times \mathbb {P}^1, cC\right)$ , where C is a $(4,4)$ curve and their wall crossings coincide with the VGIT quotients of $(2,4)$ , complete intersection curves in $\mathbb {P}^3$ . This, together with recent results by Laza and O’Grady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of $(4,4)$ curves on $\mathbb {P}^1\times \mathbb {P}^1$ and the Baily–Borel compactification of moduli of quartic hyperelliptic K3 surfaces.



1992 ◽  
Vol 35 (3) ◽  
pp. 328-340 ◽  
Author(s):  
William M. Faucette

AbstractIn this paper it is shown that the computation of higher dimensional harmonic volume, defined in [1], can be reduced to Harris' computation in the onedimensional case (See [3]), so that higher dimensional harmonic volume may be computed essentially as an iterated integral. We then use this formula to produce a specific smooth curve , namely a specific double cover of the Fermat quartic, so that the image of the second symmetric product of in its Jacobian via the Abel-Jacobi map is algebraically inequivalent to the image of under the group involution on the Jacobian.



2020 ◽  
Vol 156 (7) ◽  
pp. 1310-1347
Author(s):  
Yankı Lekili ◽  
Alexander Polishchuk

Using Auroux’s description of Fukaya categories of symmetric products of punctured surfaces, we compute the partially wrapped Fukaya category of the complement of $k+1$ generic hyperplanes in $\mathbb{CP}^{n}$, for $k\geqslant n$, with respect to certain stops in terms of the endomorphism algebra of a generating set of objects. The stops are chosen so that the resulting algebra is formal. In the case of the complement of $n+2$ generic hyperplanes in $\mathbb{C}P^{n}$ ($n$-dimensional pair of pants), we show that our partial wrapped Fukaya category is equivalent to a certain categorical resolution of the derived category of the singular affine variety $x_{1}x_{2}\ldots x_{n+1}=0$. By localizing, we deduce that the (fully) wrapped Fukaya category of the $n$-dimensional pair of pants is equivalent to the derived category of $x_{1}x_{2}\ldots x_{n+1}=0$. We also prove similar equivalences for finite abelian covers of the $n$-dimensional pair of pants.



2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Matsuo Sato

We prove that the moduli space of the pseudo holomorphic curves in the A-model on a symplectic torus is homeomorphic to a moduli space of Feynman diagrams in the configuration space of the morphisms in the B-model on the corresponding elliptic curve. These moduli spaces determine the A∞ structure of the both models.



Author(s):  
C. J. Bott ◽  
Paola Comparin ◽  
Nathan Priddis
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document