energy density distribution
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 21)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Kuang Shi ◽  
Huaiyu Liu ◽  
Lei Wang ◽  
Yu Bie ◽  
Yue Yang

With the increasing of global energy requirements and environmental problems, the use of solar thermal energy has attracted widespread attention. The selective solar absorption coating is the most important part of a solar thermal conversion device. At present, most of the coatings work well in a vacuum at a high temperature, while not stably in the air environment. Based on the high-temperature resistant and infrared-reflective properties of ITO, a multilayer film of SiO2/Si3N4/SiO2/ITO/Cr has been designed as a selective solar absorber. The genetic algorithm is applied to optimize the material and thickness selection for each layer. The results show that the optimized multilayer film could achieve a high solar absorptance up to 90% while keeping a relatively low infrared emittance around 50% for temperature change between 600°C and 900°C. All the materials composing this film have been tested before to be chemically stable at a high temperature up to 900°C in the air environment. It is also adaptive to different incident angles from 0° to 60°. The finite-difference time-domain method was also adopted to plot the energy density distribution for different wavelengths, which provided the underlying mechanism for the selective emission spectrum. The findings in this study would provide valuable guidance to design a low-cost selective solar absorption coating without the need for vacuum generation.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012066
Author(s):  
V I Shin ◽  
P V Moskvin ◽  
M S Vorobyov ◽  
V N Devyatkov ◽  
N N Koval

Abstract The article presents the results of studies devoted to the study of the energy density distribution in the amplitude-modulated regime of electron beam generation. It is shown that in the first ≈ 50 μs of the duration of the beam current pulse, its spatial rearrangement occurs, due to the development of the arc discharge current. Thus, the rearrangement of the arc current, which develops from the axis of the system, leads to an axial diving of the emission current density and the beam current density on the target. With the development of the arc current, the energy density on the target on the axis of the system decreases and after ≈ 50 μs takes on a steady-state value, which can change only as a result of a change in the conditions for generating an electron beam or the transition to a modulated regime of electron beam generation. It has been experimentally shown using calorimetric measurements that the shape of the electron beam current pulse with its amplitude modulation with a pulse duration of more than 100 μs has little effect on the distribution of the beam energy density in the target region.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rikeen D. Jobanputra ◽  
Jack Hayes ◽  
Sravani Royyuru ◽  
Marc A. Masen

AbstractThe use of close-fitting PPE is essential to prevent exposure to dispersed airborne matter, including the COVID-19 virus. The current pandemic has increased pressure on healthcare systems around the world, leading to medical professionals using high-grade PPE for prolonged durations, resulting in device-induced skin injuries. This study focuses on computationally improving the interaction between skin and PPE to reduce the likelihood of discomfort and tissue damage. A finite element model is developed to simulate the movement of PPE against the face during day-to-day tasks. Due to limited available data on skin characteristics and how these vary interpersonally between sexes, races and ages, the main objective of this study was to establish the effects and trends that mask modifications have on the resulting subsurface strain energy density distribution in the skin. These modifications include the material, geometric and interfacial properties. Overall, the results show that skin injury can be reduced by using softer mask materials, whilst friction against the skin should be minimised, e.g. through use of micro-textures, humidity control and topical creams. Furthermore, the contact area between the mask and skin should be maximised, whilst the use of soft materials with incompressible behaviour (e.g. many elastomers) should be avoided.


2021 ◽  
Author(s):  
Yang yushun ◽  
Sijiang Wei ◽  
Kui Li

Abstract This study analyzes the impact pressure in the Yuejin and Qianqiu coal mines in the Yimei mine area, and shows that rock bursts may be caused by damage to the overburden gravel strata caused by coal seam mining and unreasonable mining layout. Rock burst microseismic signals from the Yuejin and Qianqiu mines show that the duration of the vibration waveform is greater than 0.06 s. The fast Fourier transform shows that the low-frequency component of the rock burst accounts for a large proportion, with the main frequency being concentrated in the range between 5 and 50 Hz. A numerical simulation scheme was designed, and the extended D-P strength criterion was adopted to select the distributed load of a sinusoidal pulse in the load waveform as the dynamic load. The plastic strain energy density distribution is used to measure the tendency of the surrounding rock to impact the roadway. By changing the shock position, wave frequency, disturbance intensity, tunnel section shape, and buried depth, it is seen that when a (vibration wave amplitude) = 2.0 m/s2, f (vibration wave frequency) = 40 Hz, H (roadway buried depth) = 1000 m, θ (the angle between the impact position of the seismic wave and the center of the roadway) = 180°, and the roadway section is horseshoe-shaped, the tendency of the surrounding rock to impact the roadway is higher. Under the same conditions, the impact tendency of the surrounding rock on the roadway is the smallest and second smallest when the roadway is circular and straight-wall arched, respectively.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Harold White ◽  
Jerry Vera ◽  
Arum Han ◽  
Alexander R. Bruccoleri ◽  
Jonathan MacArthur

AbstractWhile conducting analysis related to a DARPA-funded project to evaluate possible structure of the energy density present in a Casimir cavity as predicted by the dynamic vacuum model, a micro/nano-scale structure has been discovered that predicts negative energy density distribution that closely matches requirements for the Alcubierre metric. The simplest notional geometry being analyzed as part of the DARPA-funded work consists of a standard parallel plate Casimir cavity equipped with pillars arrayed along the cavity mid-plane with the purpose of detecting a transient electric field arising from vacuum polarization conjectured to occur along the midplane of the cavity. An analytic technique called worldline numerics was adapted to numerically assess vacuum response to the custom Casimir cavity, and these numerical analysis results were observed to be qualitatively quite similar to a two-dimensional representation of energy density requirements for the Alcubierre warp metric. Subsequently, a toy model consisting of a 1 $$\upmu $$ μ m diameter sphere centrally located in a 4 $$\upmu $$ μ m diameter cylinder was analyzed to show a three-dimensional Casimir energy density that correlates well with the Alcubierre warp metric requirements. This qualitative correlation would suggest that chip-scale experiments might be explored to attempt to measure tiny signatures illustrative of the presence of the conjectured phenomenon: a real, albeit humble, warp bubble.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 702
Author(s):  
Changhong Liu ◽  
Xingxin Yang ◽  
Shaohu Peng ◽  
Yongjun Zhang ◽  
Lingxi Peng ◽  
...  

Wire electrical discharge machining (WEDM), widely used to fabricate micro and precision parts in manufacturing industry, is a nontraditional machining method using discharge energy which is transformed into thermal energy to efficiently remove materials. A great amount of research has been conducted based on pulse characteristics. However, the spark image-based approach has little research reported. This paper proposes a discharge spark image-based approach. A model is introduced to predict the discharge status using spark image features through a synchronous high-speed image and waveform acquisition system. First, the relationship between the spark image features (e.g., area, energy, energy density, distribution, etc.) and discharge status is explored by a set of experiments). Traditional methods have claimed that pulse waveform of “short” status is related to the status of non-machining while through our research, it is concluded that this is not always true by conducting experiments based on the spark images. Second, a deep learning model based on Convolution neural network (CNN) and Gated recurrent unit (GRU) is proposed to predict the discharge status. A time series of spark image features extracted by CNN form a 3D feature space is used to predict the discharge status through GRU. Moreover, a quantitative labeling method of machining state is proposed to improve the stability of the model. Due the effective features and the quantitative labeling method, the proposed approach achieves better predict result comparing with the single GRU model.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Zdeněk Stuchlík ◽  
Jan Hladík ◽  
Jaroslav Vrba ◽  
Camilo Posada

AbstractExtremely compact objects trap gravitational waves or neutrinos, assumed to move along null geodesics in the trapping regions. The trapping of neutrinos was extensively studied for spherically symmetric extremely compact objects constructed under the simplest approximation of the uniform energy density distribution, with radius located under the photosphere of the external spacetime; in addition, uniform emissivity distribution of neutrinos was assumed in these studies. Here we extend the studies of the neutrino trapping for the case of the extremely compact Tolman VII objects representing the simplest generalization of the internal Schwarzschild solution with uniform distribution of the energy density, and the correspondingly related distribution of the neutrino emissivity that is thus again proportional to the energy density; radius of such extremely compact objects can overcome the photosphere of the external Schwarzschild spacetime. In dependence on the parameters of the Tolman VII spacetimes, we determine the “local” and “global” coefficients of efficiency of the trapping and demonstrate that the role of the trapping is significantly stronger than in the internal Schwarzschild spacetimes. Our results indicate possible influence of the neutrino trapping in cooling of neutron stars.


2021 ◽  
Author(s):  
Rikeen D. Jobanputra ◽  
Jack Hayes ◽  
Sravani Royyuru ◽  
Marc A. Masen

Abstract The use of close-fitting PPE is essential to prevent exposure to dispersed airborne matter, including the COVID-19 virus. The current pandemic has increased pressure on the healthcare system, leading to medical professionals using high-grade PPE for prolonged times, resulting in device-insduced skin injuries. This study focuses on computationally improving the interaction between skin and PPE to reduce the likelihood of discomfort and tissue damage. A finite element model is developed to simulate the movement of PPE against the face during day-to-day tasks. Due to limited available data on skin characteristics and how these vary interpersonally between sexes, races and ages, the main objective of this study was to establish the effects and trends that mask modifications have on the resulting subsurface strain energy density distribution in the skin. These modifications include the material, geometry and interfacial properties. Overall, the results show that skin injury can be reduced by using softer mask materials, whilst friction against the skin should be minimised, e.g. through use of micro-textures, humidity control and topical creams. Furthermore, the contact area between the mask and skin should be maximised, whilst the use of soft materials with incompressible behaviours (e.g. most elastomers) should be avoided.


2021 ◽  
Vol 35 (11) ◽  
pp. 1386-1387
Author(s):  
Vasil Tabatadze ◽  
Eldar Veliyev ◽  
Ertugrul Karacuha ◽  
Kamil Karacuha

In this article, there is considered the electromagnetic plane wave diffraction by the half-plane with fractional boundary conditions. As a mathematical tool, the fractional calculus is used. The theoretical part is given based on which the near field, Poynting vector and energy density distribution are calculated. Interesting results are obtained for the fractional order between marginal values, which describes a new type of material with new properties. The results are analyzed.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiaoyan Teng ◽  
Nan Liu ◽  
Jiang Xudong

The energy flow analysis (EFA) method is developed to predict the energy density of a high damping beam with constant axial force in the high-frequency range. The energy density and intensity of the beam are associated with high structural damping loss factor and axial force and introduced to derive the energy transmission equation. For high damping situation, the energy loss equation is derived by considering the relationship between potential energy and total energy. Then, the energy density governing equation is obtained. Finally, the feasibility of the EFA approach is validated by comparing the EFA results with the modal solutions for various frequencies and structural damping loss factors. The effects of structural damping loss factor and axial force on the energy density distribution are also discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document