scholarly journals Intrinsic and Dual Volume Deviations of Convex Bodies and Polytopes

Author(s):  
Florian Besau ◽  
Steven Hoehner ◽  
Gil Kur

Abstract We establish estimates for the asymptotic best approximation of the Euclidean unit ball by polytopes under a notion of distance induced by the intrinsic volumes. We also introduce a notion of distance between convex bodies that is induced by the Wills functional and apply it to derive asymptotically sharp bounds for approximating the ball in high dimensions. Remarkably, it turns out that there is a polytope that is almost optimal with respect to all intrinsic volumes simultaneously, up to absolute constants. Finally, we establish asymptotic formulas for the best approximation of smooth convex bodies by polytopes with respect to a distance induced by dual volumes, which originate from Lutwak’s dual Brunn–Minkowski theory.

2010 ◽  
Vol 42 (3) ◽  
pp. 605-619 ◽  
Author(s):  
I. Bárány ◽  
F. Fodor ◽  
V. Vígh

Let K be a d-dimensional convex body with a twice continuously differentiable boundary and everywhere positive Gauss-Kronecker curvature. Denote by Kn the convex hull of n points chosen randomly and independently from K according to the uniform distribution. Matching lower and upper bounds are obtained for the orders of magnitude of the variances of the sth intrinsic volumes Vs(Kn) of Kn for s ∈ {1,…,d}. Furthermore, strong laws of large numbers are proved for the intrinsic volumes of Kn. The essential tools are the economic cap covering theorem of Bárány and Larman, and the Efron-Stein jackknife inequality.


2018 ◽  
Vol 18 (1) ◽  
pp. 105-114
Author(s):  
Gilles Bonnet

AbstractThis paper presents bounds for the best approximation, with respect to the Hausdorff metric, of a convex bodyKby a circumscribed polytopePwith a given number of facets. These bounds are of particular interest ifKis elongated. To measure the elongation of the convex set, its isoperimetric ratioVj(K)1/jVi(K)−1/iis used.


2010 ◽  
Vol 42 (03) ◽  
pp. 605-619
Author(s):  
I. Bárány ◽  
F. Fodor ◽  
V. Vígh

LetKbe ad-dimensional convex body with a twice continuously differentiable boundary and everywhere positive Gauss-Kronecker curvature. Denote byKnthe convex hull ofnpoints chosen randomly and independently fromKaccording to the uniform distribution. Matching lower and upper bounds are obtained for the orders of magnitude of the variances of thesth intrinsic volumesVs(Kn) ofKnfors∈ {1,…,d}. Furthermore, strong laws of large numbers are proved for the intrinsic volumes ofKn. The essential tools are the economic cap covering theorem of Bárány and Larman, and the Efron-Stein jackknife inequality.


1982 ◽  
Vol 56 (4) ◽  
pp. 524-528 ◽  
Author(s):  
Joseph Th. J. Tans ◽  
Dick C. J. Poortvliet

✓ The pressure-volume index (PVI) was determined in 40 patients who underwent continuous monitoring of ventricular fluid pressure. The PVI value was calculated using different mathematical models. From the differences between these values, it is concluded that a monoexponential relationship with a constant term provides the best approximation of the PVI.


2008 ◽  
Vol 60 (1) ◽  
pp. 3-32 ◽  
Author(s):  
Károly Böröczky ◽  
Károly J. Böröczky ◽  
Carsten Schütt ◽  
Gergely Wintsche

AbstractGiven r > 1, we consider convex bodies in En which contain a fixed unit ball, and whose extreme points are of distance at least r from the centre of the unit ball, and we investigate how well these convex bodies approximate the unit ball in terms of volume, surface area and mean width. As r tends to one, we prove asymptotic formulae for the error of the approximation, and provide good estimates on the involved constants depending on the dimension.


1995 ◽  
Vol 42 (2) ◽  
pp. 367-378 ◽  
Author(s):  
M. Mateljević ◽  
M. Pavlović

Sign in / Sign up

Export Citation Format

Share Document