intrinsic volumes
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Thomas Godland ◽  
Zakhar Kabluchko

AbstractWe consider the simplices $$\begin{aligned} K_n^A=\{x\in {\mathbb {R}}^{n+1}:x_1\ge x_2\ge \cdots \ge x_{n+1},x_1-x_{n+1}\le 1,\,x_1+\cdots +x_{n+1}=0\} \end{aligned}$$ K n A = { x ∈ R n + 1 : x 1 ≥ x 2 ≥ ⋯ ≥ x n + 1 , x 1 - x n + 1 ≤ 1 , x 1 + ⋯ + x n + 1 = 0 } and $$\begin{aligned} K_n^B=\{x\in {\mathbb {R}}^n:1\ge x_1\ge x_2\ge \cdots \ge x_n\ge 0\}, \end{aligned}$$ K n B = { x ∈ R n : 1 ≥ x 1 ≥ x 2 ≥ ⋯ ≥ x n ≥ 0 } , which are called the Schläfli orthoschemes of types A and B, respectively. We describe the tangent cones at their j-faces and compute explicitly the sums of the conic intrinsic volumes of these tangent cones at all j-faces of $$K_n^A$$ K n A and $$K_n^B$$ K n B . This setting contains sums of external and internal angles of $$K_n^A$$ K n A and $$K_n^B$$ K n B as special cases. The sums are evaluated in terms of Stirling numbers of both kinds. We generalize these results to finite products of Schläfli orthoschemes of type A and B and, as a probabilistic consequence, derive formulas for the expected number of j-faces of the Minkowski sums of the convex hulls of a finite number of Gaussian random walks and random bridges. Furthermore, we evaluate the analogous angle sums for the tangent cones of Weyl chambers of types A and B and finite products thereof.


2020 ◽  
Vol 52 (4) ◽  
pp. 1085-1126
Author(s):  
Michael A. Klatt ◽  
Steffen Winter

AbstractFractal percolation exhibits a dramatic topological phase transition, changing abruptly from a dust-like set to a system-spanning cluster. The transition points are unknown and difficult to estimate. In many classical percolation models the percolation thresholds have been approximated well using additive geometric functionals, known as intrinsic volumes. Motivated by the question of whether a similar approach is possible for fractal models, we introduce corresponding geometric functionals for the fractal percolation process F. They arise as limits of expected functionals of finite approximations of F. We establish the existence of these limit functionals and obtain explicit formulas for them as well as for their finite approximations.


2020 ◽  
Vol 6 (2) ◽  
pp. 163-171
Author(s):  
Fedor Petrov ◽  
Alexander Tarasov

Author(s):  
David Alonso-Gutiérrez ◽  
María A. Hernández Cifre ◽  
Jesús Yepes Nicolás

The Wills functional [Formula: see text] of a convex body [Formula: see text], defined as the sum of its intrinsic volumes [Formula: see text], turns out to have many interesting applications and properties. In this paper, we make profit of the fact that it can be represented as the integral of a log-concave function, which, furthermore, is the Asplund product of other two log-concave functions, and obtain new properties of the Wills functional (indeed, we will work in a more general setting). Among others, we get upper bounds for [Formula: see text] in terms of the volume of [Formula: see text], as well as Brunn–Minkowski and Rogers–Shephard-type inequalities for this functional. We also show that the cube of edge-length 2 maximizes [Formula: see text] among all [Formula: see text]-symmetric convex bodies in John position, and we reprove the well-known McMullen’s inequality [Formula: see text] using a different approach.


Author(s):  
Martin Lotz ◽  
Michael B. McCoy ◽  
Ivan Nourdin ◽  
Giovanni Peccati ◽  
Joel A. Tropp

Author(s):  
Florian Besau ◽  
Steven Hoehner ◽  
Gil Kur

Abstract We establish estimates for the asymptotic best approximation of the Euclidean unit ball by polytopes under a notion of distance induced by the intrinsic volumes. We also introduce a notion of distance between convex bodies that is induced by the Wills functional and apply it to derive asymptotically sharp bounds for approximating the ball in high dimensions. Remarkably, it turns out that there is a polytope that is almost optimal with respect to all intrinsic volumes simultaneously, up to absolute constants. Finally, we establish asymptotic formulas for the best approximation of smooth convex bodies by polytopes with respect to a distance induced by dual volumes, which originate from Lutwak’s dual Brunn–Minkowski theory.


2019 ◽  
Vol 21 (05) ◽  
pp. 1850038 ◽  
Author(s):  
Gilles Bonnet ◽  
Giorgos Chasapis ◽  
Julian Grote ◽  
Daniel Temesvari ◽  
Nicola Turchi

Let [Formula: see text], [Formula: see text] be independent random points in [Formula: see text], distributed according to the so-called beta or beta-prime distribution, respectively. We establish threshold phenomena for the volume, intrinsic volumes, or more general measures of the convex hulls of these random point sets, as the space dimension [Formula: see text] tends to infinity. The dual setting of polytopes generated by random halfspaces is also investigated.


Sign in / Sign up

Export Citation Format

Share Document