Determination of Sulfites in Foods by Simultaneous Nitrogen Purging and Differential Pulse Polarography

1989 ◽  
Vol 72 (3) ◽  
pp. 476-480
Author(s):  
Walter Holak ◽  
John Specchio

Abstract An improved technique has been developed for determination of sulfites in food by differential pulse polarography. A Teflon™ sleeve is fitted to the dropping mercury electrode capillary so that SO2 is purged from the sample and simultaneously detected at peak potential. Bound sulfite in the sample is released at room temperature by addition of base in the absence of oxygen. For some foods, the prepared sample was passed through a Sep-Pak C-18 cartridge to remove naturally occurring sulfur compounds so that only added sulfite is measured. The level of detection was approximately 1 μg S02/g. Results agreed with those obtained by the optimized Monier- Williams method for a variety of foods.

1983 ◽  
Vol 48 (10) ◽  
pp. 2903-2908 ◽  
Author(s):  
Viktor Vrabec ◽  
Oldřich Vrána ◽  
Vladimír Kleinwächter

A method is described for determining total platinum content in urine, blood plasma and tissues of patients or experimental animals receiving cis-dichlorodiamineplatinum(II). The method is based on drying and combustion of the biological material in a muffle furnace. The product of the combustion is dissolved successively in aqua regia, hydrochloric acid and ethylenediamine. The resulting platinum-ethylenediamine complex yields a catalytic current at a dropping mercury electrode allowing to determine platinum by differential pulse polarography. Platinum levels of c. 50-1 000 ng per ml of the biological fluid or per 0.5 g of a tissue can readily be analyzed with a linear calibration.


1991 ◽  
Vol 56 (7) ◽  
pp. 1434-1445 ◽  
Author(s):  
Jiří Barek ◽  
Ivana Švagrová ◽  
Jiří Zima

Polarographic reduction of the genotoxic N,N’-dinitrosopiperazine was studied and its mechanism was suggested. Optimum conditions were established for the determination of this substance by tast polarography over the concentration region of 1 . 10-3 to 1 . 10-6 mol l-1 and by differential pulse polarography on the conventional dropping mercury electrode or by fast scan differential pulse voltammetry and linear sweep voltammetry on a hanging mercury drop electrode over the concentration region of 1 . 10-3 to 1 . 10-7 mol l-1. Attempts at increasing further the sensitivity via adsorptive accumulation of the analyte on the surface of the hanging mercury drop failed. The methods are applicable to the testing of the chemical efficiency of destruction of the title chemical carcinogen based on its oxidation with potassium permanganate in acid solution.


1996 ◽  
Vol 61 (3) ◽  
pp. 333-341
Author(s):  
Jiří Barek ◽  
Roman Hrnčíř ◽  
Josino C. Moreira ◽  
Jiří Zima

The polarographic behaviour was studied for 6-β-D-glucopyranosyloxy-7-hydroxycoumarin, a natural compound serving as an optical whitening agent. The substance can be quantitated by tast polarography, differential pulse polarography using a conventional dropping mercury electrode, and differential pulse polarography using a static mercury drop electrode over the regions of 20-1 000, 2-1 000, and 0.2-1 000 μmol l-1, respectively. The methods developed for the quantitation of the compound were applied to its direct determination in a raw product.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1571-1587 ◽  
Author(s):  
Karel Čížek ◽  
Jiří Barek ◽  
Jiří Zima

The polarographic behavior of 3-nitrofluoranthene was investigated by DC tast polarography (DCTP) and differential pulse polarography (DPP), both at a dropping mercury electrode, differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV), both at a hanging mercury drop electrode. Optimum conditions have been found for its determination by the given methods in the concentration ranges of 1 × 10-6-1 × 10-4 mol l-1 (DCTP), 1 × 10-7-1 × 10-4 mol l-1 (DPP), 1 × 10-8-1 × 10-6 mol l-1 (DPV) and 1 × 10-9-1 × 10-7 mol l-1 (AdSV), respectively. Practical applicability of these techniques was demonstrated on the determination of 3-nitrofluoranthene in drinking and river water after its preliminary separation and preconcentration using liquid-liquid and solid phase extraction with the limits of determination 4 × 10-10 mol l-1 (drinking water) and 2 × 10-9 mol l-1 (river water).


1989 ◽  
Vol 54 (8) ◽  
pp. 2105-2119 ◽  
Author(s):  
Jiří Barek ◽  
Ivana Švagrová-Hauserová ◽  
Jiří Zima

The polarographic reduction of the title azodye has been studied, a mechanism was proposed and optimal conditions were found for the determination of this substance by TAST polarography in the range 5.10-5-2.10-6 mol l-1 and differential pulse polarography at a dropping mercury electrode in the range 5.10-5-2.10-8 mol l-1. The sensitivity was further increased by adsorptive accumulation of the determined substance on the surface of a hanging mercury drop electrode with linear scan voltammetry (determination limit 5.10-10 mol l-1). The selectivity was increased by prior separation of the determined azodye using thin layer chromatography and by transferring the substance adsorbed on the surface of the hanging mercury drop to a new base electrolyte solution.


2000 ◽  
Vol 65 (12) ◽  
pp. 1888-1896 ◽  
Author(s):  
Jiří Barek ◽  
Jiří Zima ◽  
Josino C. Moreira ◽  
Alexandr Muck

The polarographic behaviour of 1-nitropyrene was investigated by tast polarography, differential pulse polarography (both with a dropping mercury electrode), differential pulse voltammetry, and adsorptive stripping voltammetry (both with a hanging mercury drop electrode). Optimum conditions have been found for its determination by the given methods in the concentration ranges 2-100, 0.2-100, 0.1-10, and 0.001-0.01 μmol l-1, respectively.


1987 ◽  
Vol 52 (4) ◽  
pp. 867-877
Author(s):  
Jiří Barek ◽  
Barbara Tietzová ◽  
Jiří Zima

The polarographic reduction of the bisazodye congo red has been studied, a mechanism was proposed for this process and optimal conditions were found for determination of this substance by TAST polarography and differential pulse polarography at a dropping mercury electrode and using fast scan differential pulse voltammetry and voltammetry with linearly increasing voltage at a hanging mercury drop electrode. The detection limit for the latter two techniques is about 10-8 mol l-1; a further decrease in the value can be attained by prior accumulation of the determined substance by adsorption on the surface of the working electrode.


1995 ◽  
Vol 60 (5) ◽  
pp. 802-812
Author(s):  
Jiří Barek ◽  
Roman Hrnčíř ◽  
Josino C. Moreira

The polarographic behaviour of the title optical whitening agent was studied in aqueous-methanolic solutions. Conditions for its quantitation were found within the concentration regions of 10 to 100 μmol l-1 by tast polarography, 1 to 100 μmol l-1 by differential pulse polarography on the conventional dropping mercury electrode, and 0.1 to 10 μmol l-1 by differential pulse polarography on a static mercury drop electrode. The analytical procedures developed were applied to the determination of the compound in technical products.


1990 ◽  
Vol 55 (12) ◽  
pp. 2904-2913 ◽  
Author(s):  
Jiří Barek ◽  
Jana Kubíčková ◽  
Viktor Mejstřík ◽  
Oldřich Petira ◽  
Jiří Zima

The polarographic reduction of the 3'-halogen derivatives of N,N-dimethyl-4-aminoazobenzene was studied in mixed water-methanol medium and optimum conditions were found for the determination of these genotoxic substances by tast polarography in the concentration range 1 . 10-4 to 2 . 10-6 mol l-1, differential pulse polarography at a dropping mercury electrode in the range 1 . 10-4 to 2 . 10-7 mol l-1 and fast scan differential pulse voltammetry at a hanging mercury drop electrode in the range 1 . 10-6 to 2 . 10-8 mol l-1. The increase in the sensitivity resulting from adsorptive accumulation of the studied substances on the surface of a hanging mercury drop can be utilized in the determination using the latter method in the concentration range 1 . 10-8 to 2 . 10-9 mol l-1.


2004 ◽  
Vol 69 (11) ◽  
pp. 2021-2035 ◽  
Author(s):  
Kumaran Shanmugam ◽  
Jiří Barek ◽  
Jiří Zima

Polarographic and voltammetric behavior of 1,5-dinitronaphthalene was investigated using tast polarography and differential pulse polarography at a classic dropping mercury electrode and differential pulse voltammetry and adsorptive stripping voltammetry at a hanging mercury drop electrode. Optimum conditions have been found for the determination of tested substance in the concentration range 2-10 μmol l-1 in tast polarography, 0.2-1 μmol l-1 in differential pulse polarography at a classic dropping mercury electrode or differential pulse voltammetry at a hanging mercury drop electrode, and 0.02-0.1 μmol l-1 using adsorptive stripping voltammetry. A possible mechanism of the electrochemical reduction of 1,5-dinitronaphthalene at mercury electrodes is discussed.


Sign in / Sign up

Export Citation Format

Share Document