scholarly journals Whole Mitochondrial Genomic and Y-Chromosomal Phylogenies of Burmese Long-Tailed Macaque (Macaca fascicularis aurea) Suggest Ancient Hybridization between fascicularis and sinica Species Groups

2017 ◽  
Vol 109 (4) ◽  
pp. 360-371 ◽  
Author(s):  
Kazunari Matsudaira ◽  
Yuzuru Hamada ◽  
Srichan Bunlungsup ◽  
Takafumi Ishida ◽  
Aye Mi San ◽  
...  
2020 ◽  
Author(s):  
Laurie S. Stevison ◽  
Zachary A. Szpiech ◽  
Nick P. Bailey ◽  
Taylor E. Novak ◽  
Don J. Melnick ◽  
...  

AbstractGenital divergence contributes to reproductive barriers between species. Emergence of a novel accessory structure, the baculum, has independently evolved and been lost throughout mammalian evolution, purportedly driven by sexual selection. In primates, the longest recorded baculum belongs to Macaca arctoides, the bear macaque. This species has been proposed to be of homoploid hybrid origin via ancient hybridization between representatives from the fascicularis and sinica species groups. To investigate the evolutionary origins of the bear macaque and its unique morphology, we used whole genome sequences to quantify gene flow and phylogenetic relationships in 10 individuals from 5 species, including the bear macaque (n=3), and two species each from the sinica (n=3) and fascicularis (n=4) species groups. The results of these analyses were concordant, and identified 608 genes in the bear macaque that supported both clustering between M. arctoides and the sinica group (topo2) and had shared derived alleles between species from the two groups. Similarly, 361 genes supported both clustering between M. arctoides and the fascicularis group (topo3) and had shared derived alleles between both groups. Further, sliding window analysis of phylogenetic relationships revealed 53% of the genomic regions supported placement of M. arctoides in the sinica species group (topo2), 16% supported placement in the fascicularis species group (topo3), and 11% supported M. arctoides in a grouping distinct from the sinica and fascicularis groups (topo1). Genomic regions with topo1 were intersected with previously identified QTL for mouse baculum morphology, and 47 genes were found, including five of sixteen major candidate loci that govern mouse baculum variation (KIF14, KIAA0586, RHOJ, TGM2, and DACT1). Although baculum morphology in the bear macaque is diverged from its parent taxa, it most closely resembles that of the fascicularis group. Outliers of shared ancestry from the fascicularis species group located within these same QTL regions overlap with the gene BMP4, which is an important component of the hedgehog signaling pathway that controls gonadogenesis. Two additional outlier genes (one shared with each species group) outside of the baculum QTL are known to interact with BMP4, suggesting this pathway may be involved in baculum morphology in primates. These results highlight how the mosaic ancestry of the bear macaque could explain its unique baculum evolution and collectively contribute to reproductive isolation.Introductory ParagraphIn mammals, the baculum has extreme morphological variability, a dynamic evolutionary history characterized by repeated gain and loss, and is often used in species identification. The bear macaque has divergent genital morphology, including the longest baculum among all primates, and is proposed to have evolved via ancient hybrid speciation. Here, population genetic and phylogenomic approaches were used to examine how ancient hybridization in the bear macaque may have shaped this important component of genital morphology. Results demonstrate extensive mosaicism across the genome, which is consistent with ancient genetic contributions from both putative parental taxa. Genetic regions associated with baculum morphology also had mosaic ancestry for several genes, including KIF14 and KIAA0586, major candidate genes for baculum morphology in mice, and BMP4, a developmental gene involved in gonadogenesis. These results have important implications for how hybridization may have shaped the evolution of reproductive isolation in this unusual species with complex speciation.


2020 ◽  
Author(s):  
José‐Carlos Delgado‐González ◽  
Carlos‐de‐la Rosa Prieto ◽  
Nuria Vallejo‐Calcerrada ◽  
Diana‐Lucía Tarruela‐Hernández ◽  
Sandra Cebada‐Sánchez ◽  
...  

Author(s):  
Julio Sepúlveda-Saavedra ◽  
Beatriz González-Corona ◽  
Víctor A. Tamez Rodríguez ◽  
Ma. Victoria Bermúdez de Rocha ◽  
Alfredo Piñeyro López

It has been shown in previous studies that the toxin T-514 isolated from K. humboldtiana induces severe damage to the lung in treated rodents. Histopathological findings include edema, and alveolar hemorrage. However, the ultraestructure of the lesion has not been investigated. In this study we used two species of rodents: Hamster and guinea pig, and a primate: Macaca fascicularis. Animals received different single dosis of the toxin via intraperitoneal. Control animals received only the vehicle (propylen glycol). Inmediately after spontaneous death, lung samples were fixed in Karnovsky-Ito fixative, post fixed in osmium tetroxide and embedded in epon. Thin sections were prepared with an Ultratome V LKB, stained with uranly acetate and lead citrate, and studied in an electron microscope Zeiss-EM109.


2019 ◽  
Vol 44 (4) ◽  
pp. 930-942
Author(s):  
Geraldine A. Allen ◽  
Luc Brouillet ◽  
John C. Semple ◽  
Heidi J. Guest ◽  
Robert Underhill

Abstract—Doellingeria and Eucephalus form the earliest-diverging clade of the North American Astereae lineage. Phylogenetic analyses of both nuclear and plastid sequence data show that the Doellingeria-Eucephalus clade consists of two main subclades that differ from current circumscriptions of the two genera. Doellingeria is the sister group to E. elegans, and the Doellingeria + E. elegans subclade in turn is sister to the subclade containing all remaining species of Eucephalus. In the plastid phylogeny, the two subclades are deeply divergent, a pattern that is consistent with an ancient hybridization event involving ancestral species of the Doellingeria-Eucephalus clade and an ancestral taxon of a related North American or South American group. Divergence of the two Doellingeria-Eucephalus subclades may have occurred in association with northward migration from South American ancestors. We combine these two genera under the older of the two names, Doellingeria, and propose 12 new combinations (10 species and two varieties) for all species of Eucephalus.


2010 ◽  
Vol 27 (2) ◽  
pp. 85-91 ◽  
Author(s):  
Martin Šlachta ◽  
Jan Frelich ◽  
Tomáš Tonka

Function of coprophagous beetles (Coleoptera: Scarabaeidae, Geotrupidae, Hydrophilidae) in cattle pastures inferred from pitfall trapping dataAn analysis of data on the dry weight biomass of coprophagous beetles in standardized dung (4.5 l) was conducted in order to characterize the spatial and the seasonal distribution of the beetles' biomass in cattle pastures and to elucidate their function in dung decomposition. Nested Anova with factors of farm, site (nested in farm), seasonal period and year was used to evaluate the effect of these factors on the biomass of four functional species groups: the dung dwellers ofScarabaeidae(subfamilyAphodiinae), the dung dwellers ofHydrophilidae, the small tunnellers ofScarabaeidae(subfamilyCoprinae) and the large tunnellers ofGeotrupidae. The spatial variation of biomass (between the sites and the farms) was insignificant (P>0.05) in the two dung-dweller groups and in the large-tunnellers group. On the other hand, a significant (P<0.05) seasonal variation of biomass was found in all but the large tunneller group. In dung dwellers, the spring biomass was formed mainly by two species,Aphodius prodromusandA. sphacelatus. In summer, most of the biomass was accounted for bySphaeridium lunatum, S. scarabaeoidesandA. rufipes. In the two tunneller groups,Onthophagus fracticornis, Geotrupes stercorariusandG. spinigerformed a majority of the biomass in dung.


Pathology ◽  
1981 ◽  
Vol 13 (1) ◽  
pp. 13-27 ◽  
Author(s):  
Struan K. Sutherland ◽  
A.R. Coulter ◽  
R.D. Harris ◽  
K.E. Lovering ◽  
I.D. Roberts

Sign in / Sign up

Export Citation Format

Share Document