genomic regions
Recently Published Documents


TOTAL DOCUMENTS

3032
(FIVE YEARS 1470)

H-INDEX

87
(FIVE YEARS 18)

BMC Medicine ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Frances Theunissen ◽  
Loren L. Flynn ◽  
Ryan S. Anderton ◽  
P. Anthony Akkari

AbstractThere is considerable variability in disease progression for patients with amyotrophic lateral sclerosis (ALS) including the age of disease onset, site of disease onset, and survival time. There is growing evidence that short structural variations (SSVs) residing in frequently overlooked genomic regions can contribute to complex disease mechanisms and can explain, in part, the phenotypic variability in ALS patients. Here, we discuss SSVs recently characterized by our laboratory and how these discoveries integrate into the current literature on ALS, particularly in the context of application to future clinical trials. These markers may help to identify and differentiate patients for clinical trials that have a similar ALS disease mechanism(s), thereby reducing the impact of participant heterogeneity. As evidence accumulates for the genetic markers discovered in SQSTM1, SCAF4, and STMN2, we hope to improve the outcomes of future ALS clinical trials.


2022 ◽  
Author(s):  
Linyi Zhang ◽  
Samridhi Chaturvedi ◽  
Chris Nice ◽  
Lauren Lucas ◽  
Zachariah Gompert

Structural variants (SVs) can promote speciation by directly causing reproductive isolation or by suppressing recombination across large genomic regions. Whereas examples of each mechanism have been documented, systematic tests of the role of SVs in speciation are lacking. Here, we take advantage of long-read (Oxford nanopore) whole-genome sequencing and a hybrid zone between two Lycaeides butterfly taxa (L. melissa and Jackson Hole Lycaeides) to comprehensively evaluate genome-wide patterns of introgression for SVs and relate these patterns to hypotheses about speciation. We found >100,000 SVs segregating within or between the two hybridizing species. SVs and SNPs exhibited similar levels of genetic differentiation between species, with the exception of inversions, which were more differentiated. We detected credible variation in patterns of introgression among SV loci in the hybrid zone, with 562 of 1419 ancestry-informative SVs exhibiting genomic clines that deviating from null expectations based on genome-average ancestry. Overall, hybrids exhibited a directional shift towards Jackson Hole Lycaeides ancestry at SV loci, consistent with the hypothesis that these loci experienced more selection on average then SNP loci. Surprisingly, we found that deletions, rather than inversions, showed the highest skew towards excess introgression from Jackson Hole Lycaeides. Excess Jackson Hole Lycaeides ancestry in hybrids was also especially pronounced for Z-linked SVs and inversions containing many genes. In conclusion, our results show that SVs are ubiquitous and suggest that SVs in general, but especially deletions, might contribute disproportionately to hybrid fitness and thus (partial) reproductive isolation.


2022 ◽  
Author(s):  
Elise Parey ◽  
Alexandra Louis ◽  
Jerome Monfort ◽  
Yann Guiguen ◽  
Hugues Roest Crollius ◽  
...  

Teleost fish are one of the most species-rich and diverse clades amongst vertebrates, which makes them an outstanding model group for evolutionary, ecological and functional genomics. Yet, despite a growing number of sequence reference genomes, large-scale comparative analysis remains challenging in teleosts due to the specifics of their genomic organization. As legacy of a whole genome duplication dated 320 million years ago, a large fraction of teleost genomes remain in duplicate paralogous copies. This ancestral polyploidy confounds the detailed identification of orthologous genomic regions across teleost species. Here, we combine tailored gene phylogeny methodology together with the state-of-the art ancestral karyotype reconstruction to establish the first high resolution comparative atlas of paleopolyploid regions across 74 teleost fish genomes. We show that this atlas represents a unique, robust and reliable resource for fish genomics. We then use the comparative atlas to study the tetraploidization and rediploidization mechanisms that affected the ancestor of teleosts. Although the polyploid history of teleost genomes appears complex, we uncover that meiotic recombination persisted between duplicated chromosomes for over 60 million years after polyploidization, suggesting that the teleost ancestor was an autotetraploid.


2022 ◽  
Vol 289 (1966) ◽  
Author(s):  
Cecilia Estalles ◽  
Sheela P. Turbek ◽  
María José Rodríguez-Cajarville ◽  
Luís Fábio Silveira ◽  
Kazumasa Wakamatsu ◽  
...  

Coloration traits are central to animal communication; they often govern mate choice, promote reproductive isolation and catalyse speciation. Specific genetic changes can cause variation in coloration, yet far less is known about how overall coloration patterns—which involve combinations of multiple colour patches across the body—can arise and are genomically controlled. We performed genome-wide association analyses to link genomic changes to variation in melanin (eumelanin and pheomelanin) concentration in feathers from different body parts in the capuchino seedeaters, an avian radiation with diverse colour patterns despite remarkably low genetic differentiation across species. Cross-species colour variation in each plumage patch is associated with unique combinations of variants at a few genomic regions, which include mostly non-coding (presumably regulatory) areas close to known pigmentation genes. Genotype–phenotype associations can vary depending on patch colour and are stronger for eumelanin pigmentation, suggesting eumelanin production is tightly regulated. Although some genes are involved in colour variation in multiple patches, in some cases, the SNPs associated with colour changes in different patches segregate spatially. These results suggest that coloration patterning in capuchinos is generated by the modular combination of variants that regulate multiple melanogenesis genes, a mechanism that may have promoted this rapid radiation.


Heredity ◽  
2022 ◽  
Author(s):  
Vikas Singh ◽  
Pallavi Sinha ◽  
Jimmy Obala ◽  
Aamir W. Khan ◽  
Annapurna Chitikineni ◽  
...  

AbstractTo identify genomic segments associated with days to flowering (DF) and leaf shape in pigeonpea, QTL-seq approach has been used in the present study. Genome-wide SNP profiling of extreme phenotypic bulks was conducted for both the traits from the segregating population (F2) derived from the cross combination- ICP 5529 × ICP 11605. A total of 126.63 million paired-end (PE) whole-genome resequencing data were generated for five samples, including one parent ICP 5529 (obcordate leaf and late-flowering plant), early and late flowering pools (EF and LF) and obcordate and lanceolate leaf shape pools (OLF and LLS). The QTL-seq identified two significant genomic regions, one on CcLG03 (1.58 Mb region spanned from 19.22 to 20.80 Mb interval) for days to flowering (LF and EF pools) and another on CcLG08 (2.19 Mb region spanned from 6.69 to 8.88 Mb interval) for OLF and LLF pools, respectively. Analysis of genomic regions associated SNPs with days to flowering and leaf shape revealed 5 genic SNPs present in the unique regions. The identified genomic regions for days to flowering were also validated with the genotyping-by-sequencing based classical QTL mapping method. A comparative analysis of the identified seven genes associated with days to flowering on 12 Fabaceae genomes, showed synteny with 9 genomes. A total of 153 genes were identified through the synteny analysis ranging from 13 to 36. This study demonstrates the usefulness of QTL-seq approach in precise identification of candidate gene(s) for days to flowering and leaf shape which can be deployed for pigeonpea improvement.


PhytoKeys ◽  
2022 ◽  
Vol 188 ◽  
pp. 49-71
Author(s):  
Shun K. Hirota ◽  
Tetsukazu Yahara ◽  
Kengo Fuse ◽  
Hiroyuki Sato ◽  
Shuichiro Tagane ◽  
...  

According to the contemporary classification of Hydrangea native to Japan, H. serrata is a polymorphic species including six varieties. We discovered a plant identified as H. serrata, but morphologically distinct from previously known varieties, in Yakushima island where approximately 50 endemic species are known. To determine the relationship of this plant with previously known varieties, we examined morphology and constructed a highly resolved phylogeny of H. serrata and its relatives using three chloroplast genomic regions, rbcL, trnL intron, psbA-trnH, and two nuclear genomic regions, ITS1 and ITS2, and Multiplex ISSR genotyping by sequencing (MIG-seq). Based on these morphological and phylogenetic observations, we describe Hydrangea acuminata subsp. yakushimensissubsp. nov. as a newly discovered lineage in Yakushima, Japan and propose Hydrangea minamitaniistat. nov. and Hydrangea acuminata subsp. australisstat. nov. which were previously treated as varieties of H. serrata.


2022 ◽  
Author(s):  
Aude Coupel‐Ledru ◽  
Benoît Pallas ◽  
Magalie Delalande ◽  
Vincent Segura ◽  
Baptiste Guitton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document