Canine Exposure to Borrelia burgdorferi and Prevalence of Ixodes dammini (Acari: Ixodidae) on Deer as a Measure of Lyme Disease Risk in the Northeastern United States

1993 ◽  
Vol 30 (1) ◽  
pp. 171-178 ◽  
Author(s):  
Thomas J. Daniels ◽  
Durland Fish ◽  
Jay F. Levine ◽  
Martha A. Greco ◽  
Alan T. Eaton ◽  
...  
Author(s):  
Yuting Dong ◽  
Zheng Huang ◽  
Yong Zhang ◽  
Yingying X.G. Wang ◽  
Yang La

Lyme disease, recognized as one of the most important vector-borne diseases worldwide, has been increasing in incidence and spatial extend in United States. In the Northeast and Upper Midwest, Lyme disease is transmitted by Ixodes scapularis. Currently, many studies have been conducted to identify factors influencing Lyme disease risk in the Northeast, however, relatively few studies focused on the Upper Midwest. In this study, we explored and compared the climatic and landscape factors that shape the spatial patterns of human Lyme cases in these two regions, using the generalized linear mixed models. Our results showed that climatic variables generally had opposite correlations with Lyme disease risk, while landscape factors usually had similar effects in these two regions. High precipitation and low temperature were correlated with high Lyme disease risk in the Upper Midwest, while with low Lyme disease risk in the Northeast. In both regions, size and fragmentation related factors of residential area showed positive correlations with Lyme disease risk. Deciduous forests and evergreen forests had opposite effects on Lyme disease risk, but the effects were consistent between two regions. In general, this study provides new insight into understanding the differences of risk factors of human Lyme disease risk in these two regions.


2009 ◽  
Vol 9 (2) ◽  
pp. 103-110 ◽  
Author(s):  
R Jory Brinkerhoff ◽  
Corrine M Folsom-O'Keefe ◽  
Kimberly Tsao ◽  
Maria A Diuk-Wasser

2019 ◽  
Vol 57 (1) ◽  
pp. 273-280 ◽  
Author(s):  
Alison E Simmons ◽  
Anna B Manges ◽  
Tashi Bharathan ◽  
Shannon L Tepe ◽  
Sara E McBride ◽  
...  

Abstract Lyme disease is the most commonly reported vector-borne illness and sixth most commonly reported notifiable infectious disease in the United States. The majority of cases occur in the Northeast and upper-Midwest, and the number and geographic distribution of cases is steadily increasing. The blacklegged tick (Ixodes scapularis Say) is the principal vector of the Lyme disease spirochete (Borrelia burgdorferi sensu stricto) in eastern North America. Although Lyme disease risk has been studied in residential and recreational settings across rural to urban landscapes including metropolitan areas, risk within U.S. cities has not been adequately evaluated despite the presence of natural and undeveloped public parkland where visitors could be exposed to B. burgdorferi-infected I. scapularis. We studied the occurrence of I. scapularis and infection prevalence of B. burgdorferi in four insular regional parks within the city of Pittsburgh to assess Lyme disease risk of exposure to infected adults and nymphs. We found that the density of I. scapularis adults (1.16 ± 0.21 ticks/100 m2) and nymphs (3.42 ± 0.45 ticks/100 m2), infection prevalence of B. burgdorferi in adults (51.9%) and nymphs (19.3%), and density of infected adults (0.60 ticks/100 m2) and nymphs (0.66 ticks/100 m2) are as high in these city parks as nonurban residential and recreational areas in the highly endemic coastal Northeast. These findings emphasize the need to reconsider, assess, and manage Lyme disease risk in greenspaces within cities, especially in high Lyme disease incidence states.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Logan K. Stevens ◽  
Korine N. Kolivras ◽  
Yili Hong ◽  
Valerie A. Thomas ◽  
James B. Campbell ◽  
...  

Lyme disease is the most significant vector-borne disease in the United States, and its southward advance over several decades has been quantified. Previous research has examined the potential role of climate change on the disease’s expansion, but no studies have considered the role of future land cover upon its distribution. This research examines Lyme disease risk in the south-eastern U.S. based on projected land cover developed under four Intergovernmental Panel on Climate Change Scenarios: A1B, A2, B1, and B2. Land cover types and edge indices significantly associated with Lyme disease in Virginia were incorporated into a spatial Poisson regression model to quantify potential land cover suitability for Lyme disease in the south-eastern U.S. under each scenario. Our results indicate an intensification of potential land cover suitability for Lyme disease under the A scenarios and a decrease of potential land cover suitability under the B scenarios. The decrease under the B scenarios is a critical result, indicating that Lyme disease risk can be decreased by making different land cover choices. Additionally, health officials can focus efforts in projected high incidence areas.


Sign in / Sign up

Export Citation Format

Share Document