Midturbinate Swabs Are Comparable to Nasopharyngeal Swabs for Quantitative Detection of Respiratory Syncytial Virus in Infants

2018 ◽  
Vol 8 (6) ◽  
pp. 554-558 ◽  
Author(s):  
Anne J Blaschke ◽  
Matt McKevitt ◽  
Krow Ampofo ◽  
Tammi Lewis ◽  
Hao Chai ◽  
...  

Abstract Nasopharyngeal (NP) swabs are generally used to detect respiratory syncytial virus (RSV) in infants. However, midturbinate (MT) swabs may provide comparable results. In this study, we enrolled hospitalized infants aged <24 months with RSV and collected NP and MT swabs. The resulting viral loads measured by real-time reverse-transcription quantitative polymerase chain reaction were similar. Most parents preferred MT swabs over NP swabs.

2010 ◽  
Vol 134 (3) ◽  
pp. 444-448 ◽  
Author(s):  
Zhengming Gu ◽  
Jianmin Pan ◽  
Matthew J. Bankowski ◽  
Randall T. Hayden

Abstract Context.—BK virus infections among immunocompromised patients are associated with disease of the kidney or urinary bladder. High viral loads, determined by quantitative polymerase chain reaction (PCR), have been correlated with clinical disease. Objective.—To develop and evaluate a novel method for real-time PCR detection and quantification of BK virus using labeled primers. Design.—Patient specimens (n = 54) included 17 plasma, 12 whole blood, and 25 urine samples. DNA was extracted using the MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche Applied Science, Indianapolis, Indiana); sample eluate was PCR-amplified using the labeled primer PCR method. Results were compared with those of a user-developed quantitative real-time PCR method (fluorescence resonance energy transfer probe hybridization). Results.—Labeled primer PCR detected less than 10 copies per reaction and showed quantitative linearity from 101 to 107 copies per reaction. Analytical specificity of labeled primer PCR was 100%. With clinical samples, labeled primer PCR demonstrated a trend toward improved sensitivity compared with the reference method. Quantitative assay comparison showed an R2 value of 0.96 between the 2 assays. Conclusions.—Real-time PCR using labeled primers is highly sensitive and specific for the quantitative detection of BK virus from a variety of clinical specimens. These data demonstrate the applicability of labeled primer PCR for quantitative viral detection and offer a simplified method that removes the need for separate oligonucleotide probes.


2021 ◽  
Author(s):  
Xin-xin Shen ◽  
Dan-wen Nie ◽  
Hong Zhang ◽  
Zhi-fei Zhan ◽  
Yuan Gao ◽  
...  

Abstract Background: Recombinase-aided amplification(RAA) is a new, simple, and ultrafast isothermal molecular diagnostic technique performed within 30min at 39°C–42°C.In this study, we evaluated the clinical performance of four duplex RAA kits for hepatitis B virus(HBV), human adenovirus 3(HAdV3), human adenovirus 7(HAdV7), and Bordetella pertussis and one duplex reverse-transcription RAA (RT-RAA) kit for respiratory syncytial virus (RSV).Methods: A total of 392 sera and 374 respiratory tract samples were collected from five institutions in four China regions. Each RAA kit’s sensitivity and specificity were compared with those of real-time quantitative polymerase chain reaction(qPCR),real-time quantitative reverse-transcription polymerase chain reaction(qRT-PCR), or sequencing. Results: Compared with qPCR or qRT-PCR, the sensitivities of HBV RAA,RSV RT-RAA, and B.pertussis RAA were 97.55%,96.67%, and 100%,respectively,and all of the specificities were 100%.The total coincidence rates were 97.78%(383/392,95%CI:95.63%–98.85%),97.70%(212/217, 95%CI:94.57%–99.16%), and 100%(60/60,95%CI:92.80%–100%),respectively.The Kappa values were 0.977,0.947, and 1,respectively(P<0.05).Regarding the sequencing, the sensitivities of HAdV3 RAA and HAdV7 RAA were 100% and 97.37%, respectively,and all specificities were 100%.The total coincidence rates were 100%(97/97,95%CI:91.58%–100%) and 98.97%(96/97,95%CI:94.39%–99.82%),and the Kappa values were 1 and 0.978 (P<0.05),respectively.Conclusions: With comparable clinical performance, these RAA kits are suitable assays for rapidly detecting pathogens in resource-limited laboratories.


Sign in / Sign up

Export Citation Format

Share Document