indirect immunofluorescence assay
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 26)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol 52 (2) ◽  
Author(s):  
Warley Vieira de Freitas Paula ◽  
Ísis Indaiara Gonçalves Granjeiro Taques ◽  
Vanessa Carvalho Miranda ◽  
Ana Laura Gonçalves Barreto ◽  
Luiza Gabriella Ferreira de Paula ◽  
...  

ABSTRACT: Ticks are significant parasites of dogs in the tropics, where tick-borne pathogens are highly prevalent, especially in areas where tick control measures are frequently neglected. This study investigated the seroprevalence and hematological abnormalities associated with Ehrlichia canis in dogs referred to a veterinary teaching hospital in Central-western Brazil. Out of 264 dogs tested for anti-Ehrlichia canis antibodies by an indirect immunofluorescence assay (IFA), 59.1% (156/264) were positive. Seropositivity was significantly associated to anemia and thrombocytopenia, alone or in combination, and to leukopenia. Conversely, there were no differences in terms of seroprevalence according to sex, breed and age. This study demonstrated that dogs referred to a veterinary teaching hospital in Central-western Brazil are highly exposed to E. canis and that seropositive dogs are more likely to present hematological abnormalities, particularly anemia, thrombocytopenia and leukopenia. To our knowledge, this is the first study on detection of anti-E. canis antibodies by means of IFA among dogs in the state of Goiás. These findings highlighted the need for increasing awareness among dog owners regarding tick control measures in Central-western Brazil, ultimately to reduce the risk of exposure to E. canis and other tick-borne pathogens.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Jun Zhao ◽  
Rubo Zhang ◽  
Ling Zhu ◽  
Huidan Deng ◽  
Fengqing Li ◽  
...  

Abstract Background Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating diseases affecting the swine industry globally. Evaluation of antibody responses and neutralizing antibody titers is the most effective method for vaccine evaluation. In this study, the B cell line epitopes of PRRSV M protein were predicted, and two peptide ELISA assays were established (M-A110-129 ELISA, M-A148-174 ELISA) to detect antibodies against PRRSV M protein. Field serum samples collected from pig farms were used to validate the peptide ELISA and compare it with an indirect immunofluorescence assay. Results The sensitivity and specificity of M-A110-129 ELISA and M-A148-174 ELISA were (111/125) 88.80%, (69/70) 98.57% and (122/125) 97.60%, (70/70) 100%, relative to indirect immunofluorescence assay. This peptide ELISA could detect antibodies against different genotypes of PRRSV including type 1 PRRSV, classical PRRSV, HP-PRRSV, and NADC30 like PRRSV, but not antibodies against other common swine viruses. The results of ROC analysis showed that the area under the curve (AUC) of the M-A110-129 ELISA and M-A148-174 ELISA were 0.967 and 0.996, respectively. Compared the concordance of results using two peptide ELISA assays, the IDEXX PRRSV X3 Ab ELISA and a virus neutralization test, were assessed using a series of 147 sera from pigs vaccinated with the NADC30-like PRRSV inactivated vaccine. The M-A148-174 ELISA had the best consistency, with a Cohen’s kappa coefficient of 0.8772. The concordance rates of the Hipra PRRSV ELISA kit, M-A110-129 ELISA and M-A148-174 ELISA in the field seropositive detection results were 91.08, 86.32 and 95.35%, relative to indirect immunofluorescence assay. Conclusions In summary, compared with M-A110-129 ELISA, the PRRSV M-A148-174 ELISA is of value for detecting antibodies against PRRSV and the evaluation of the NADC30-like PRRSV inactivated vaccine, but the advantage is insufficient in serological early diagnosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anne E. Tebo ◽  
Robert L. Schmidt ◽  
Kamran Kadkhoda ◽  
Lisa K. Peterson ◽  
Edward K. L. Chan ◽  
...  

Abstract Background To evaluate the interpretation and reporting of antinuclear antibodies (ANA) by indirect immunofluorescence assay (IFA) using HEp-2 substrates based on common practice and guidance by the International Consensus on ANA patterns (ICAP). Method Participants included two groups [16 clinical laboratories (CL) and 8 in vitro diagnostic manufacturers (IVD)] recruited via an email sent to the Association of Medical Laboratory Immunologists (AMLI) membership. Twelve (n = 12) pre-qualified specimens were distributed to participants for testing, interpretation and reporting HEp-2 IFA. Results obtained were analyzed for accuracy with the intended and consensus response for three main categorical patterns (nuclear, cytoplasmic and mitotic), common patterns and ICAP report nomenclatures. The distributions of antibody titers of specimens were also compared. Results Laboratories differed in the categorical patterns reported; 8 reporting all patterns, 3 reporting only nuclear patterns and 5 reporting nuclear patterns with various combinations of other patterns. For all participants, accuracy with the intended response for the categorical nuclear pattern was excellent at 99% [95% confidence interval (CI): 97–100%] compared to 78% [95% CI 67–88%] for the cytoplasmic, and 93% [95% CI 86%–100%] for mitotic patterns. The accuracy was 13% greater for the common nomenclature [87%, 95% CI 82–90%] compared to the ICAP nomenclature [74%, 95% CI 68–79%] for all participants. Participants reporting all three main categories demonstrated better performances compared to those reporting 2 or less categorical patterns. The average accuracies varied between participant groups, however, with the lowest and most variable performances for cytoplasmic pattern specimens. The reported titers for all specimens varied, with the least variability for nuclear patterns and most titer variability associated with cytoplasmic patterns. Conclusions Our study demonstrated significant accuracy for all participants in identifying the categorical nuclear staining as well as traditional pattern assignments for nuclear patterns. However, there was less consistency in reporting cytoplasmic and mitotic patterns, with implications for assigning competencies and training for clinical laboratory personnel.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Marios Hadjivassiliou ◽  
Graeme Wild ◽  
Priya Shanmugarajah ◽  
Richard A. Grünewald ◽  
Mohammed Akil

Abstract Background and purpose Immune mediated cerebellar ataxias account for a substantial proportion of all progressive ataxias. A diagnostic serological test is not always available. This is particularly problematic in Primary Autoimmune Cerebellar Ataxia, hence the necessity for diagnostic criteria recently devised and published by an International Task Force. We present our experience in the use of a commercially available indirect immunofluorescence assay, intended to be used for the detection of antibodies associated with paraneoplastic neurological syndromes. Methods Retrospective review of patients with ataxia who underwent serological testing using this assay as part of their diagnostic evaluation. We were interested in 3 groups: suspected immune mediated ataxias, genetically confirmed ataxias and patients with cerebellar variant of multi-system atrophy (MSA-C). The indirect immunofluorescence assay was performed using commercially available monkey cerebellum slides and anti-human IgG FITC conjugated antiserum. Results A total of 300 patients that had this test and fitted into one of these 3 groups (immune ataxias 190, genetic ataxias 60, MSA-C 50) were identified. The prevalence of positive immunofluorescence but negative immunoblot was 172/190 (91%) in the suspected immune ataxia group, 3/60 (5%) in the genetic group and 2/50 (4%) in the MSA-C group. The difference between the first and the other groups was significant χ2 (1, N = 291) = 64.2, p < 00001. Conclusions This report demonstrates that a commercially available immunofluorescence assay can be used to provide additional diagnostic aid for suspected immune mediated ataxias and in particular Primary Autoimmune Cerebellar Ataxia where no diagnostic marker exists.


Author(s):  
Partha Guchhait ◽  
Doddarangappa Rangaswamy Gayathri Devi ◽  
VA Indumathi ◽  
TS Deepak

Introduction: Community Acquired Pneumonia (CAP), as the name suggests, is acquired at the community level, and symptoms usually develop within 48 hours. There are two types of CAP, namely, typical and atypical. Typical pneumonia is usually caused by bacteria such as Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis. Atypical pneumonia is caused by Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, and Coxiella burnetii, as well as respiratory viruses, such as Adenovirus, Respiratory Syncytial Virus (RSV), Influenza viruses A and B, and Parainfluenza viruses 1,2,3, among others. Typical and atypical CAP can be distinguished by the absence or presence of extrapulmonary symptoms. Aim: To elucidate the proportion of atypical respiratory pathogens that cause CAP in a tertiary care hospital setting. Materials and Methods: This was a cross-sectional study that was conducted at the Department of Medicine, Chest Medicine and Microbiology of MS Ramaiah Medical College, Bengaluru, Karnataka, India. The study included 202 patients, aged 18 years and above with clinical and radiological features of CAP. Indirect Immunofluorescence Assay (IFA) was carried out to detect the pathogens. Results: The prevalence of atypical pathogens was 33.17% among all CAP patients. Atypical pneumonia was more prevalent in males and in the age group of >61 years. The most common pathogens included Mycoplasma pneumoniae (12.38%) followed by Legionella pneumophila (9.90%) and influenza A (5.94%). Typical pneumonia was primarily caused by Streptococcus pneumoniae (9.9%), followed by Klebsiella pneumoniae (1.49%), Staphylococcus aureus (1.49%), and Haemophilus influenzae (0.49%). Mixed infections occurred in 16 patients. Conclusion: Active screening for CAP is needed in all wards and Intensive Care Units (ICU), as more patients with CAP are increasingly being admitted to ICU. Data on the proportion of atypical CAP will help to use antibiotics prudently for a better prognosis, thereby preventing the emergence of antibiotic resistance.


2020 ◽  
Vol 11 ◽  
Author(s):  
Hyun-Woo Choi ◽  
Yong Jun Kwon ◽  
Ju-Heon Park ◽  
Seung-Yeob Lee ◽  
Sejong Chun ◽  
...  

Indirect immunofluorescence assay (IFA) using HEp-2 cells as a substrate is the gold standard for detecting antinuclear antibodies (ANA) in patient serum. However, the ANA IFA has labor-intensive nature of the procedure and lacks adequate standardization. To overcome these drawbacks, the automation has been developed and implemented to the clinical laboratory. The purposes of this study were to evaluate the analytical performance of a fully automated Helios ANA IFA analyzer in a real-life laboratory setting, and to compare the time and the cost of ANA IFA testing before and after adopting the Helios system. A total of 3,276 consecutive serum samples were analyzed for ANA using the Helios system from May to August 2019. The positive/negative results, staining patterns, and endpoint titers were compared between Helios and visual readings. Furthermore, the turnaround time and the number of wells used were compared before and after the introduction of Helios system. Of the 3,276 samples tested, 748 were positive and 2,528 were negative based on visual readings. Using visual reading as the reference standard, the overall relative sensitivity, relative specificity, and concordance of Helios reading were 73.3, 99.4, and 93.4% (κ = 0.80), respectively. For pattern recognition, the overall agreement was 70.1% (298/425) for single patterns, and 72.4% (89/123) for mixed patterns. For titration, there was an agreement of 75.9% (211/278) between automated and classical endpoint titers by regarding within ± one titer difference as acceptable. Helios significantly shortened the median turnaround time from 100.6 to 55.7 h (P &lt; 0.0001). Furthermore, routine use of the system reduced the average number of wells used per test from 4 to 1.5. Helios shows good agreement in distinguishing between positive and negative results. However, it still has limitations in positive/negative discrimination, pattern recognition, and endpoint titer prediction, requiring additional validation of results by human observers. Helios provides significant advantages in routine laboratory ANA IFA work in terms of labor, time, and cost savings. We hope that upgrading and developing softwares with more reliable capabilities will allow automated ANA IFA analyzers to be fully integrated into the routine operations of the clinical laboratory.


Sign in / Sign up

Export Citation Format

Share Document