scholarly journals First-order swap structures semantics for some logics of formal inconsistency

2020 ◽  
Vol 30 (6) ◽  
pp. 1257-1290
Author(s):  
Marcelo E Coniglio ◽  
Aldo Figallo-Orellano ◽  
Ana C Golzio

Abstract The logics of formal inconsistency (LFIs, for short) are paraconsistent logics (i.e. logics containing contradictory but non-trivial theories) having a consistency connective which allows to recover the ex falso quodlibet principle in a controlled way. The aim of this paper is considering a novel semantical approach to first-order LFIs based on Tarskian structures defined over swap structures, a special class of multialgebras. The proposed semantical framework generalizes previous approaches to quantified LFIs presented in the literature. The case of QmbC, the simpler quantified LFI expanding classical logic, will be analyzed in detail. An axiomatic extension of QmbC called $\textbf{QLFI1}_\circ $ is also studied, which is equivalent to the quantified version of da Costa and D’Ottaviano 3-valued logic J3. The semantical structures for this logic turn out to be Tarkian structures based on twist structures. The expansion of QmbC and $\textbf{QLFI1}_\circ $ with a standard equality predicate is also considered.

2014 ◽  
Vol 7 (3) ◽  
pp. 548-578 ◽  
Author(s):  
WALTER CARNIELLI ◽  
MARCELO E. CONIGLIO ◽  
RODRIGO PODIACKI ◽  
TARCÍSIO RODRIGUES

AbstractThis paper investigates the question of characterizing first-orderLFIs (logics of formal inconsistency) by means of two-valued semantics.LFIs are powerful paraconsistent logics that encode classical logic and permit a finer distinction between contradictions and inconsistencies, with a deep involvement in philosophical and foundational questions. Although focused on just one particular case, namely, the quantified logicQmbC, the method proposed here is completely general for this kind of logics, and can be easily extended to a large family of quantified paraconsistent logics, supplying a sound and complete semantical interpretation for such logics. However, certain subtleties involving term substitution and replacement, that are hidden in classical structures, have to be taken into account when one ventures into the realm of nonclassical reasoning. This paper shows how such difficulties can be overcome, and offers detailed proofs showing that a smooth treatment of semantical characterization can be given to all such logics. Although the paper is well-endowed in technical details and results, it has a significant philosophical aside: it shows how slight extensions of classical methods can be used to construct the basic model theory of logics that are weaker than traditional logic due to the absence of certain rules present in classical logic. Several such logics, however, as in the case of theLFIs treated here, are notorious for their wealth of models precisely because they do not make indiscriminate use of certain rules; these models thus require new methods. In the case of this paper, by just appealing to a refined version of the Principle of Explosion, or Pseudo-Scotus, some new constructions and crafty solutions to certain nonobvious subtleties are proposed. The result is that a richer extension of model theory can be inaugurated, with interest not only for paraconsistency, but hopefully to other enlargements of traditional logic.


1965 ◽  
Vol 25 ◽  
pp. 59-86 ◽  
Author(s):  
Katuzi Ono

A common feature of formal theories is that each theory has its own system of axioms described in terms of some symbols for its primitive notions together with logical symbols. Each of these theories is developed by deduction from its axiom system in a certain logical system which is usually the classical logic of the first order.


1970 ◽  
Vol 35 (4) ◽  
pp. 529-534 ◽  
Author(s):  
Melvin Fitting

There are well-known embeddings of intuitionistic logic into S4 and of classical logic into S5. In this paper we give a related embedding of (first order) classical logic directly into (first order) S4, with or without the Barcan formula. If one reads the necessity operator of S4 as ‘provable’, the translation may be roughly stated as: truth may be replaced by provable consistency. A proper statement will be found below. The proof is based ultimately on the notion of complete sequences used in Cohen's technique of forcing [1], and is given in terms of Kripke's model theory [3], [4].


Author(s):  
John P. Burgess

This article explores the role of logic in philosophical methodology, as well as its application in philosophy. The discussion gives a roughly equal coverage to the seven branches of logic: elementary logic, set theory, model theory, recursion theory, proof theory, extraclassical logics, and anticlassical logics. Mathematical logic comprises set theory, model theory, recursion theory, and proof theory. Philosophical logic in the relevant sense is divided into the study of extensions of classical logic, such as modal or temporal or deontic or conditional logics, and the study of alternatives to classical logic, such as intuitionistic or quantum or partial or paraconsistent logics. The nonclassical consists of the extraclassical and the anticlassical, although the distinction is not clearcut.


2008 ◽  
Vol 1 (3) ◽  
pp. 267-304 ◽  
Author(s):  
DOV GABBAY ◽  
ODINALDO RODRIGUES ◽  
ALESSANDRA RUSSO

In this article, we propose a belief revision approach for families of (non-classical) logics whose semantics are first-order axiomatisable. Given any such (non-classical) logic $L$, the approach enables the definition of belief revision operators for $L$, in terms of a belief revision operation satisfying the postulates for revision theory proposed by Alchourrón, Gärdenfors and Makinson (AGM revision, Alchourrón et al. (1985)). The approach is illustrated by considering the modal logic K, Belnap's four-valued logic, and Łukasiewicz's many-valued logic. In addition, we present a general methodology to translate algebraic logics into classical logic. For the examples provided, we analyse in what circumstances the properties of the AGM revision are preserved and discuss the advantages of the approach from both theoretical and practical viewpoints.


1993 ◽  
Vol 58 (3) ◽  
pp. 800-823 ◽  
Author(s):  
D. M. Gabbay ◽  
V. B. Shehtman

The interest in fragments of predicate logics is motivated by the well-known fact that full classical predicate calculus is undecidable (cf. Church [1936]). So it is desirable to find decidable fragments which are in some sense “maximal”, i.e., which become undecidable if they are “slightly” extended. Or, alternatively, we can look for “minimal” undecidable fragments and try to identify the vague boundary between decidability and undecidability. A great deal of work in this area concerning mainly classical logic has been done since the thirties. We will not give a complete review of decidability and undecidability results in classical logic, referring the reader to existing monographs (cf. Suranyi [1959], Lewis [1979], and Dreben, Goldfarb [1979]). A short summary can also be found in the well-known book Church [1956]. Let us recall only several facts. Herein we will consider only logics without functional symbols, constants, and equality.(C1) The fragment of the classical logic with only monadic predicate letters is decidable (cf. Behmann [1922]).(C2) The fragment of the classical logic with a single binary predicate letter is undecidable. (This is a consequence of Gödel [1933].)(C3) The fragment of the classical logic with a single individual variable is decidable; in fact it is equivalent to Lewis S5 (cf. Wajsberg [1933]).(C4) The fragment of the classical logic with two individual variables is decidable (Segerberg [1973] contains a proof using modal logic; Scott [1962] and Mortimer [1975] give traditional proofs.)(C5) The fragment of the classical logic with three individual variables and binary predicate letters is undecidable (cf. Surańyi [1943]). In fact this paper considers formulas of the following typeφ,ψ being quantifier-free and the set of binary predicate letters which can appear in φ or ψ being fixed and finite.


Sign in / Sign up

Export Citation Format

Share Document