Genetic explanations 3: neurobehavioural explanations

Author(s):  
Raj S. Bhopal

These hypotheses propose brain and behavioural evolution as the driver of the adaptations that are now leading to CVD and DM2. Of these, the behavioural switch, also known as the soldier-to-diplomat, hypothesis is best developed. The concept is that as humans moved from hunter-gatherer to settled agricultural lives, complex changes occurred to support this lifestyle, e.g. reduced aggression, more resources to nurture fewer children, and preferential use of glucose by the brain rather than by muscle. Insulin resistance is seen as a secondary—once beneficial—adaptation underlying this change. This hypothesis implies insulin resistance is valuable and it also provides an explanation for South Asians’ reduced muscle mass. Similar ideas have been proposed on longer evolutionary timescales, e.g. the aggression control hypothesis. At present the evidence from these hypotheses does not explain South Asians’ particular susceptibility to CVD and DM2. The hypotheses do, valuably, point to the brain’s central role in glucose metabolism.

Author(s):  
Raj S. Bhopal

The thrifty genotype proposes that populations susceptible to CVD and DM2 have been subjected to intermittent, serious food shortages and have evolved to cope, e.g. through insulin resistance. This means their glucose is not readily entering the muscle to be used there but is preferentially used by the brain and liver. Glucose is converted to fat in the liver and stored for times of food scarcity. This thrifty state is not, however, beneficial in modern times where food is plentiful. This hypothesis remains a common explanation, including for South Asians’ susceptibility to DM2. The hypothesis has lost support, mostly because of lack of confirmatory empirical data, but has sparked-off new ideas, e.g. the mitochondrial efficiency hypothesis as an adaptation to climatic change, and the predation release hypothesis which sees diminishing need for leanness and agility as triggering higher obesity prevalence. These newer ideas need more research.


2011 ◽  
Vol 152 (3) ◽  
pp. 83-91 ◽  
Author(s):  
Tamás Halmos ◽  
Ilona Suba

Regulatory role of the brain in energy expenditure, appetite, glucose metabolism, and central effects of insulin has been prominently studied. Certain neurons in the hypothalamus increase or decrease appetite via orexigenes and anorexigenes, regulating energy balance and food intake. Hypothalamus is the site of afferent and efferent stimuli between special nuclei and beta- and alpha cells, and it regulates induction/inhibition of glucose output from the liver. Incretines, produced in intestine and in certain brain cells (brain-gut hormones), link to special receptors in the hypothalamus. Central role of insulin has been proved both in animals and in humans. Insulin gets across the blood-brain barrier, links to special hypothalamic receptors, regulating peripheral glucose metabolism. Central glucose sensing, via “glucose-excited” and “glucose-inhibited” cells have outstanding role. Former are active in hyperglycaemia, latter in hypoglycaemia, via influencing beta– and alpha cells, independently of traditional metabolic pathways. Evidence of brain insulin resistance needs centrally acting drugs, paradigm changes in therapy and prevention of metabolic syndrome, diabetes, cardiovascular and oncological diseases. Orv. Hetil., 2011, 152, 83–91.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1854-P
Author(s):  
SATOSHI KADOWAKI ◽  
YOSHIFUMI TAMURA ◽  
YUKI SOMEYA ◽  
KAGEUMI TAKENO ◽  
TAKASHI FUNAYAMA ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 298-OR
Author(s):  
THIAGO M. BATISTA ◽  
NICOLAI J. WEWER ALBRECHTSEN ◽  
JULEEN R. ZIERATH ◽  
MATTHIAS MANN ◽  
C. RONALD KAHN

Diabetes ◽  
1996 ◽  
Vol 45 (7) ◽  
pp. 915-925 ◽  
Author(s):  
R. C. Bonadonna ◽  
S. Del Prato ◽  
E. Bonora ◽  
M. P. Saccomani ◽  
G. Gulli ◽  
...  

2013 ◽  
Vol 40 (6) ◽  
pp. 524
Author(s):  
Miao LIU ◽  
Wen-Fei WANG ◽  
Ming-Yao LIU ◽  
Jing-Zhuang ZHAO ◽  
Yin BAI ◽  
...  

2001 ◽  
Vol 14 (5) ◽  
pp. 407-415
Author(s):  
John T. Metz ◽  
Malcolm D. Cooper ◽  
Terry F. Brown ◽  
Leann H. Kinnunen ◽  
Declan J. Cooper

The process of discovering and developing new drugs is complicated. Neuroimaging methods can facilitate this process. An analysis of the conceptual bases and practical limitations of different neuroimaging modalities reveals that each technique can best address different kinds of questions. Radioligand studies are well suited to preclinical and Phase II questions when a compound is known or suspected to affect well-understood mechanisms; they are also useful in Phase IV to characterize effective agents. Cerebral blood flow studies can be extremely useful in evaluating the effects of a drug on psychological tasks (mostly in Phase IV). Glucose metabolism studies can answer the simplest questions about whether a compound affects the brain, where, and how much. Such studies are most useful in confirming central effects (preclinical and early clinical phases), in determining effective dose ranges (Phase II), and in comparing different drugs (Phase IV).


Parasitology ◽  
1941 ◽  
Vol 33 (4) ◽  
pp. 373-389 ◽  
Author(s):  
Gwendolen Rees

1. The structure of the proboscides of the larva of Dibothriorhynchus grossum (Rud.) is described. Each proboscis is provided with four sets of extrinsic muscles, and there is an anterior dorso-ventral muscle mass connected to all four proboscides.2. The musculature of the body and scolex is described.3. The nervous system consists of a brain, two lateral nerve cords, two outer and inner anterior nerves on each side, twenty-five pairs of bothridial nerves to each bothridium, four longitudinal bothridial nerves connecting these latter before their entry into the bothridia, four proboscis nerves arising from the brain, and a series of lateral nerves supplying the lateral regions of the body.4. The so-called ganglia contain no nerve cells, these are present only in the posterior median commissure which is therefore the nerve centre.


Sign in / Sign up

Export Citation Format

Share Document