The musculature and nervous system of the plerocercoid larva of Dibothriorhynchus grossum (Rud.)

Parasitology ◽  
1941 ◽  
Vol 33 (4) ◽  
pp. 373-389 ◽  
Author(s):  
Gwendolen Rees

1. The structure of the proboscides of the larva of Dibothriorhynchus grossum (Rud.) is described. Each proboscis is provided with four sets of extrinsic muscles, and there is an anterior dorso-ventral muscle mass connected to all four proboscides.2. The musculature of the body and scolex is described.3. The nervous system consists of a brain, two lateral nerve cords, two outer and inner anterior nerves on each side, twenty-five pairs of bothridial nerves to each bothridium, four longitudinal bothridial nerves connecting these latter before their entry into the bothridia, four proboscis nerves arising from the brain, and a series of lateral nerves supplying the lateral regions of the body.4. The so-called ganglia contain no nerve cells, these are present only in the posterior median commissure which is therefore the nerve centre.

2020 ◽  
Vol 74 ◽  
pp. 517-531
Author(s):  
Wioletta Kazana ◽  
Agnieszka Zabłocka

Brain-derived neurotrophic factor (BDNF) plays an important role in the proper functioning of the nervous system. It regulates the growth and survival of nerve cells, and is crucial in processes related to the memory, learning and synaptic plasticity. Abnormalities related to the distribution and secretion of BDNF protein accompany many diseases of the nervous system, in the course of which a significant decrease in BDNF level in the brain is observed. Impairments of BDNF transport may occur, for example, in the event of a single nucleotide polymorphism in the Bdnf (Val66Met) coding gene or due to the dysfunctions of the proteins involved in intracellular transport, such as huntingtin (HTT), huntingtin-associated protein 1 (HAP1), carboxypeptidase E (CPE) or sortilin 1 (SORT1). One of the therapeutic goals in the treatment of diseases of the central nervous system may be the regulation of expression and secretion of BDNF protein by nerve cells. Potential therapeutic strategies are based on direct injection of the protein into the specific region of the brain, the use of viral vectors expressing the Bdnf gene, transplantation of BDNF-producing cells, the use of substances of natural origin that stimulate the cells of the central nervous system for BDNF production, or the use of molecules activating the main receptor for BDNF – tyrosine receptor kinase B (TrkB). In addition, an appropriate lifestyle that promotes physical activity helps to increase BDNF level in the body. This paper summarizes the current knowledge about the biological role of BDNF protein and proteins involved in intracellular transport of this neurotrophin. Moreover, it presents contemporary research trends to develop therapeutic methods, leading to an increase in the level of BDNF protein in the brain.


Author(s):  
Norio Miyamoto ◽  
Hiroshi Wada

Hemichordates are marine invertebrates consisting of two distinct groups: the solitary enteropneusts and the colonial pterobranchs. Hemichordates are phylogenetically a sister group to echinoderm composing Ambulacraria. The adult morphology of hemichordates shares some features with chordates. For that reason, hemichordates have been considered key organisms to understand the evolution of deuterostomes and the origin of the chordate body plan. The nervous system of hemichordates is also important in the discussion of the origin of centralized nervous systems. However, unlike other deuterostomes, such as echinoderms and chordates, information on the nervous system of hemichordates is limited. Recent improvements in the accessibility of embryos, development of functional tools, and genomic resources from several model organisms have provided essential information on the nervous system organization and neurogenesis in hemichordates. The comparison of the nervous system between hemichordates and other bilaterians helps to elucidate the origin of the chordate central nervous system. Extant hemichordates are divided into two groups: enteropneusts and pterobranchs. The nervous system of adult enteropneusts consists of nerve cords and the basiepidermal nerve net. The two nerve cords run along the dorsal and ventral midlines. The dorsal nerve cord forms a tubular structure in the collar region. The two nerve cords are connected through the prebranchial nerve ring. The larval nervous system of enteropneusts develops along the ciliary band and there is a ganglion at the anterior end of the body called the apical ganglion. A pair of pigmented eyespots is situated at the lateral side of the apical ganglion. The adult nervous system of pterobranchs is basiepidermal and there are several condensations of plexuses. The most prominent one is the brain, located at the base of the tentaculated arms. From the brain, small fibers radiate and enter tentaculated arms to form a tentacle nerve in each. There is a basiepidermal nerve cord in the ventral midline of the trunk.


Parasitology ◽  
1966 ◽  
Vol 56 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Gwendolen Rees

The nervous system ofAcanthobothrium coronatumconsists of paired bilobed cerebral ganglia in the scolex joined by a transverse and a dorsal and ventral commissure, and a number of longitudinal nerve cords joined by ring commissures from which arise delicate nerves supplying various organs.Bipolar neurons are present in the transverse commissure and scattered throughout the longitudinal nerves in the strobila.Multipolar neurons occur outside and in close association with the nerve cords.A band of ganglionic cells lies on the inner side of the lateral nerve cords in the scolex.Binding cells are present around the longitudinal nerve cords and ring commissures in the strobila.Stretch receptors are present in the anterior half of the scolex in association with the powerful muscles moving the bothridia and hooks.


Parasitology ◽  
1988 ◽  
Vol 96 (2) ◽  
pp. 337-351 ◽  
Author(s):  
F. Gwendolen Rees

SummaryThe plerocercoid of Callitetrarhynchus gracilis was found in the body cavity of 14 species of fishes from Bermuda. The scolex, having completed its development, continues to grow within the blastocyst. The two mobile bothridia possess lateral grooves containing backwardly directed spines. Rapid evagination of the proboscides is effected by two layers of contra-rotating spiral muscles in the walls of the proboscis bulbs. The proboscis retractor is protected from constriction, during contraction of the bulbs, by a rigid ring at the junction of bulb and sheath. Nine series of extrinsic muscles anchor the proboscis sheaths to the body wall and a ladder-like series of dorsal, ventral and lateral muscles anchors the bulbs to one another. The bulbar nerves arise from the lateral nerve cords and are joined by a series of central ring commissures along the length of the bulbs. Uniciliate sensilla occur on the scolex and glandular cells in the peduncle.


Parasitology ◽  
1996 ◽  
Vol 113 (6) ◽  
pp. 559-565 ◽  
Author(s):  
M. K. S. Gustafsson ◽  
A. M. Lindholm ◽  
N. B. Terenina ◽  
M. Reuter

SUMMARYThe free radical nitric oxide (NO), which is synthesized by nitric oxide synthase (NOS), has recently been discovered to function as a neuronal messenger. The presence of NOS was detected in the nervous system of adult Hymenolepis diminuta with NADPH-diaphorase (NADPH-d) histochemistry. The NADPH-d histochemical reaction is regarded as a selective marker for NOS in neuronal tissue. NADPH-d staining was observed in nerve fibres in the main and minor nerve cords and the transverse ring commissures, and in cell bodies in the brain commissure, along the main nerve cords, in the suckers and the rostellar sac. NADPH-d staining was also observed in the wall of the internal seminal vesicle and the genital atrium. The pattern of NADPH-d staining was compared with that of the 5-HT immunoreactive nervous elements. The NADPH-d staining reaction and the 5-HT immunoreactivity occur in separate sets of neurons. This is the first time the NADPH-d reaction has been demonstrated in the nervous system of a flatworm, indicating that NOS is present and that NO can be produced at this level of evolution.


1968 ◽  
Vol 171 (1024) ◽  
pp. 353-359 ◽  

In studying the brain, two levels of investigation emerge naturally. One of these concerns itself with properties of nerve cells, their numbers, patterns of firing, interconnexions, and so forth. The other considers the whole nervous system in what one may call ‘macroscopic’ terms. Thus it discusses ‘stimulus’, ‘response’, ‘decision’, etc. At this latter level, the nervous system operates with considerable unity. The individual nerve cells must therefore be linked in a well-integrated manner and the general nature of this integration has been recognized, especially by neurophysiologists such as Sherrington, to present a problem of central importance for our understanding of the brain. In previously published work, I have put forward a theory of how this unification of neural activity might be achieved and of a possible molecular biological basis of the necessary neural organization. In this talk I restrict myself to the first of these and thus give an account of what might be called the basic logic of the unification. I also indicate briefly how a simple hypothesis about the basis of memory would fit into such a theory.


Author(s):  
Georgia E. Hodes

In the late 20th century, the discovery that the immune system and central nervous system were not autonomous revolutionized exploration of the mechanisms by which stress contributes to immune disorders and immune regulation contributes to mental illness. There is increasing evidence of stress as integrated across the brain and body. The immune system acts in concert with the peripheral nervous system to shape the brain’s perception of the environment. The brain in turn communicates with the endocrine and immune systems to guide their responses to that environment. Examining the groundwork of mechanisms governing communication between the body and brain will hopefully provide a better understanding of the ontogeny and symptomology of some mood disorders.


2021 ◽  
Vol 10 (2) ◽  
pp. 29-43
Author(s):  
Rohit Rastogi ◽  
Mamta Saxena ◽  
Devendra K. Chaturvedi ◽  
Mayank Gupta ◽  
Akshit Rajan Rastogi ◽  
...  

Our entire body, including the brain and nervous system, works with the help of various kinds of biological stuff which includes positively charged ions of elements like sodium, potassium, and calcium. The different body parts have different energy levels, and by measuring the energy level, we can also measure the fitness of an individual. Moreover, this energy and fitness are directly related to mental health and the signals being transmitted between the brain and other parts of the body. Various activities like walking, talking, eating, and thinking are performed with the help of these transmission signals. Another critical role played by them is that it helps in examining the mechanisms of cells present at various places in the human body and signaling the nervous system and brain if they are properly functioning or not. This manuscript is divided into two parts where, in the first part, it provides the introduction, background, and extensive literature survey on Kirlian experiments to measure the human's organ energy.


1948 ◽  
Vol s3-89 (5) ◽  
pp. 1-45
Author(s):  
J.A. C. NICOL

1. A description is given of the main features of the central nervous system of Myxicola infundibulum Rénier. 2. The nerve-cord is double in the first four thoracic segments and single posteriorly. It shows segmental swellings but is not ganglionated in the usual sense in that nerve-cell accumulations are not related directly to such swellings of the cord. 3. A very large axon lies within the dorsal portion of the nerve-cord and extends from the supra-oesophageal ganglia to the posterior end of the animal. It is small in the head ganglia where it passes transversely across the mid-line, increases in diameter in the oesophageal connectives, and expands to very large size, up to 1 mm., in the posterior thorax and anterior abdomen, and gradually tapers off to about 100µ in the posterior body. It shows segmental swellings corresponding to those of the nerve-cord in each segment. It occupies about 27 per cent, of the volume of the central nervous system and 0.3 per cent, of the volume of the animal. The diameter of the fibre increases during contraction of the worm. 4. The giant fibre is a continuous structure throughout its length, without internal dividing membranes or septa. Usually a branch of the giant fibre lies in each half of the nerve-cord in the anterior thoracic segments and these several branches are continuous with one another longitudinally and transversely. 5. The giant fibre is connected with nerve-cells along its entire course; it arises from a pair of cells in the supra-oesophageal ganglia, and receives the processes of many nerve-cells in each segment. There is no difference between the nerve-cells of the giant fibre and the other nerve-cells of the cord. 6. A distinct fibrous sheath invests the giant fibre. A slight concentration of lipoid can be revealed in this sheath by the use of Sudan black. 7. About eight peripheral branches arise from the giant fibre in each segment. They have a complex course in the nerve-cord where they anastomose with one another and receive the processes of nerve-cells. Peripherally, they are distributed to the longitudinal musculature. 8. Specimens surviving 16 days following section of the nerve-cord in the thorax have shown that the giant fibre does not degenerate in front of or behind a cut, thus confirming that it is a multicellular structure connected to nerve-cells in the thorax and abdomen. 9. It is concluded that the giant fibre of M. infundibulum is a large syncytial structure, extending throughout the entire central nervous system and the body-wall of the animal. 10. The giant fibre system of M. aesthetica resembles that of M. infundibulum. 11. Some implications of the possession of such a giant axon are discussed. It is suggested that its size, structure, and simplicity lead to rapid conduction and thus effect a considerable saving of reaction time, of considerable value to the species when considered in the light of the quick contraction which it mediates. The adoption of a sedentary mode of existence has permitted this portion of the central nervous system to become developed at the expense of other elements concerned with errant habits.


Author(s):  
Michael Trimble

This chapter discusses the clinical necessity from which the intersection of neurology and psychiatry arose, exploring different eras and their associated intellectual milestones in order to understand the historical framework of contemporary neuropsychiatry. Identifying Hippocrates’ original acknowledgement of the relation of the human brain to epilepsy as a start point, the historical development of the field is traced. This encompasses Thomas Willis and his nascent descriptions of the limbic system, the philosophical and alchemical strides of the Enlightenment, and the motivations behind the Romantic era attempts to understand the brain. It then follows the growth of the field through the turn of the twentieth century, in spite of the prominence of psychoanalysis and the idea of the brainless mind, and finally the understanding of the ‘integrated action’ of the body and nervous system, which led to the integration of psychiatry and neurology, allowing for the first neuropsychiatric examinations of epilepsy.


Sign in / Sign up

Export Citation Format

Share Document