sunyaev zel'dovich effect
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 49)

H-INDEX

49
(FIVE YEARS 6)

2021 ◽  
Vol 923 (1) ◽  
pp. 37
Author(s):  
Susmita Adhikari ◽  
Tae-hyeon Shin ◽  
Bhuvnesh Jain ◽  
Matt Hilton ◽  
Eric Baxter ◽  
...  

Abstract We measure the projected number density profiles of galaxies and the splashback feature in clusters selected by the Sunyaev–Zel’dovich effect from the Advanced Atacama Cosmology Telescope (AdvACT) survey using galaxies observed by the Dark Energy Survey (DES). The splashback radius is consistent with CDM-only simulations and is located at 2.4 − 0.4 + 0.3 Mpc h − 1 . We split the galaxies on color and find significant differences in their profile shapes. Red and green-valley galaxies show a splashback-like minimum in their slope profile consistent with theory, while the bluest galaxies show a weak feature at a smaller radius. We develop a mapping of galaxies to subhalos in simulations and assign colors based on infall time onto their hosts. We find that the shift in location of the steepest slope and different profile shapes can be mapped to the average time of infall of galaxies of different colors. The steepest slope traces a discontinuity in the phase space of dark matter halos. By relating spatial profiles to infall time, we can use splashback as a clock to understand galaxy quenching. We find that red galaxies have on average been in clusters over 3.2 Gyr, green galaxies about 2.2 Gyr, while blue galaxies have been accreted most recently and have not reached apocenter. Using the full radial profiles, we fit a simple quenching model and find that the onset of galaxy quenching occurs after a delay of about a gigayear and that galaxies quench rapidly thereafter with an exponential timescale of 0.6 Gyr.


2021 ◽  
Vol 922 (1) ◽  
pp. 19
Author(s):  
Zhi-E Liu ◽  
Wen-Fei Liu ◽  
Tong-Jie Zhang ◽  
Zhong-Xu Zhai ◽  
Kamal Bora

Abstract We explore a possible time variation of the fine structure constant (α ≡ e 2/ℏ c) using the Sunyaev–Zel’dovich effect measurements of galaxy clusters along with their X-ray observations. Specifically, the ratio of the integrated Comptonization parameter Y SZ D A 2 and its X-ray counterpart Y X is used as an observable to constrain the bounds on the variation of α. Considering the violation of the cosmic distance duality relation, this ratio depends on the fine structure constant of ∼ α 3. We use the quintessence model to provide the origin of α time variation. In order to give a robust test on α variation, two galaxy cluster samples, the 61 clusters provided by the Planck collaboration and the 58 clusters detected by the South Pole Telescope (SPT), are collected for analysis. Their X-ray observations are given by the XMM-Newton survey. Our results give ζ = − 0.203 − 0.099 + 0.101 for the Planck sample and ζ = − 0.043 − 0.148 + 0.165 for the SPT sample, indicating that α is constant with redshift within 3σ and 1σ for the two samples, respectively.


Author(s):  
Simon R Dicker ◽  
Elia S Battistelli ◽  
Tanay Bhandarkar ◽  
Mark J Devlin ◽  
Shannon M Duff ◽  
...  

Abstract Compact sources can cause scatter in the scaling relationships between the amplitude of the thermal Sunyaev-Zel’dovich Effect (tSZE) in galaxy clusters and cluster mass. Estimates of the importance of this scatter vary – largely due to limited data on sources in clusters at the frequencies at which tSZE cluster surveys operate. In this paper we present 90 GHz compact source measurements from a sample of 30 clusters observed using the MUSTANG2 instrument on the Green Bank Telescope. We present simulations of how a source’s flux density, spectral index, and angular separation from the cluster’s center affect the measured tSZE in clusters detected by the Atacama Cosmology Telescope (ACT). By comparing the MUSTANG2 measurements with these simulations we calibrate an empirical relationship between 1.4 GHz flux densities from radio surveys and source contamination in ACT tSZE measurements. We find 3 per cent of the ACT clusters have more than a 20 per cent decrease in Compton-y but another 3 per cent have a 10 per cent increase in the Compton-y due to the matched filters used to find clusters. As sources affect the measured tSZE signal and hence the likelihood that a cluster will be detected, testing the level of source contamination in the tSZE signal using a tSZE selected catalog is inherently biased. We confirm this by comparing the ACT tSZE catalog with optically and X-ray selected cluster catalogs. There is a strong case for a large, high resolution survey of clusters to better characterize their source population.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Aleksandra Kusiak ◽  
Boris Bolliet ◽  
Simone Ferraro ◽  
J. Colin Hill ◽  
Alex Krolewski

2021 ◽  
Vol 104 (4) ◽  
Author(s):  
V. Calafut ◽  
P. A. Gallardo ◽  
E. M. Vavagiakis ◽  
S. Amodeo ◽  
S. Aiola ◽  
...  

2021 ◽  
Vol 913 (2) ◽  
pp. 88
Author(s):  
Jeremy Meinke ◽  
Kathrin Böckmann ◽  
Seth Cohen ◽  
Philip Mauskopf ◽  
Evan Scannapieco ◽  
...  

Author(s):  
S Grandis ◽  
J J Mohr ◽  
M Costanzi ◽  
A Saro ◽  
S Bocquet ◽  
...  

Abstract We perform a cross validation of the cluster catalog selected by the red-sequence Matched-filter Probabilistic Percolation algorithm (redMaPPer) in Dark Energy Survey year 1 (DES-Y1) data by matching it with the Sunyaev-Zel’dovich effect (SZE) selected cluster catalog from the South Pole Telescope SPT-SZ survey. Of the 1005 redMaPPer selected clusters with measured richness $\hat{\lambda }>40$ in the joint footprint, 207 are confirmed by SPT-SZ. Using the mass information from the SZE signal, we calibrate the richness–mass relation using a Bayesian cluster population model. We find a mass trend λ∝MB consistent with a linear relation (B ∼ 1), no significant redshift evolution and an intrinsic scatter in richness of σλ = 0.22 ± 0.06. By considering two error models, we explore the impact of projection effects on the richness–mass modelling, confirming that such effects are not detectable at the current level of systematic uncertainties. At low richness SPT-SZ confirms fewer redMaPPer clusters than expected. We interpret this richness dependent deficit in confirmed systems as due to the increased presence at low richness of low mass objects not correctly accounted for by our richness-mass scatter model, which we call contaminants. At a richness $\hat{\lambda }=40$, this population makes up $>12\%$ (97.5 percentile) of the total population. Extrapolating this to a measured richness $\hat{\lambda }=20$ yields $>22\%$ (97.5 percentile). With these contamination fractions, the predicted redMaPPer number counts in different plausible cosmologies are compatible with the measured abundance. The presence of such a population is also a plausible explanation for the different mass trends (B ∼ 0.75) obtained from mass calibration using purely optically selected clusters. The mean mass from stacked weak lensing (WL) measurements suggests that these low mass contaminants are galaxy groups with masses ∼3- 5 × 1013 M⊙ which are beyond the sensitivity of current SZE and X-ray surveys but a natural target for SPT-3G and eROSITA.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Marcelo A. Alvarez ◽  
Simone Ferraro ◽  
J. Colin Hill ◽  
Renée Hložek ◽  
Margaret Ikape

Author(s):  
P Marchegiani

Abstract The galaxy cluster MS 0735.6+7421 hosts two large X-ray cavities, filled with radio emission, where a decrease of the Sunyaev-Zel’dovich (SZ) effect has been detected, without establishing if its origin is thermal (from a gas with very high temperature) or non-thermal. In this paper we study how thermal and non-thermal contributions to the SZ effect in the cavities are related; in fact, Coulomb interactions with the thermal gas modify the spectrum of low energy non-thermal electrons, which dominate the non-thermal SZ effect; as a consequence, the intensity of the non-thermal SZ effect is stronger for lower density of the thermal gas inside the cavity. We calculate the non-thermal SZ effect in the cavities as a function of the thermal density, and compare the SZ effects produced by thermal and non-thermal components, and with the one from the external Intra Cluster Medium (ICM), searching for the best frequency range where it is possible to disentangle the different contributions. We find that for temperatures inside the cavities higher than ∼1500 keV the non-thermal SZ effect is expected to dominate on the thermal one, particularly at high frequencies (ν > 500 GHz), where it can also be a non-negligible fraction of the SZ effect from the external ICM. We also discuss the possible sources of astrophysical bias (as kinetic SZ effect and foreground emission from Galactic dust) and possible ways to address them, as well as necessary improvements in the modeling of the properties of cavities and the ICM.


Sign in / Sign up

Export Citation Format

Share Document