scholarly journals The Clustering of DESI-like Luminous Red Galaxies Using Photometric Redshifts

Author(s):  
Rongpu Zhou ◽  
Jeffrey A Newman ◽  
Yao-Yuan Mao ◽  
Aaron Meisner ◽  
John Moustakas ◽  
...  

Abstract We present measurements of the redshift-dependent clustering of a DESI-like luminous red galaxy (LRG) sample selected from the Legacy Survey imaging dataset, and use the halo occupation distribution (HOD) framework to fit the clustering signal. The photometric LRG sample in this study contains 2.7 million objects over the redshift range of 0.4 < z < 0.9 over 5655 sq. degrees. We have developed new photometric redshift (photo-z) estimates using the Legacy Survey DECam and WISE photometry, with σNMAD = 0.02 precision for LRGs. We compute the projected correlation function using new methods that maximize signal-to-noise while incorporating redshift uncertainties. We present a novel algorithm for dividing irregular survey geometries into equal-area patches for jackknife resampling. For a 5-parameter HOD model fit using the MultiDark halo catalog, we find that there is little evolution in HOD parameters except at the highest-redshifts. The inferred large-scale structure bias is largely consistent with constant clustering amplitude over time. In an appendix, we explore limitations of MCMC fitting using stochastic likelihood estimates resulting from applying HOD methods to N-body catalogs, and present a new technique for finding best-fit parameters in this situation. Accompanying this paper we have released the PRLS (Photometric Redshifts for the Legacy Surveys) catalog of photo-z’s obtained by applying the methods used in this work to the full Legacy Survey Data Release 8 dataset. This catalog provides accurate photometric redshifts for objects with z < 21 over more than 16,000 square degrees of sky.

2021 ◽  
Vol 503 (2) ◽  
pp. 2318-2339 ◽  
Author(s):  
César Hernández-Aguayo ◽  
Francisco Prada ◽  
Carlton M Baugh ◽  
Anatoly Klypin

ABSTRACT Upcoming surveys will use a variety of galaxy selections to map the large-scale structure of the Universe. It is important to make accurate predictions for the properties and clustering of such galaxies, including the errors on these statistics. Here, we describe a novel technique which uses the semi-analytical model of galaxy formation galform, embedded in the high-resolution N-body Planck-Millennium simulation, to populate a thousand halo catalogues generated using the Parallel-PM N-body glam code. Our hybrid scheme allows us to make clustering predictions on scales that cannot be modelled in the original N-body simulation. We focus on luminous red galaxies (LRGs) selected in the redshift range z = 0.6 − 1 from the galform output using similar colour-magnitude cuts in the r, z, and W1 bands to those that will be applied in the Dark Energy Spectroscopic Instrument (DESI) survey, and call this illustrative sample ‘DESI-like’ LRGs. We find that the LRG-halo connection is non-trivial, leading to the prediction of a non-standard halo occupation distribution; in particular, the occupation of central galaxies does not reach unity for the most massive haloes, and drops with increasing mass. The glam catalogues reproduce the abundance and clustering of the LRGs predicted by galform. We use the glam mocks to compute the covariance matrices for the two-point correlation function and power spectrum of the LRGs and their background dark matter density field, revealing important differences. We also make predictions for the linear-growth rate and the baryon acoustic oscillations distances at z = 0.6, 0.74, and 0.93. All ‘DESI-like’ LRG catalogues are made publicly available.


2005 ◽  
Vol 359 (1) ◽  
pp. 237-250 ◽  
Author(s):  
N. Padmanabhan ◽  
T. Budavari ◽  
D. J. Schlegel ◽  
T. Bridges ◽  
J. Brinkmann ◽  
...  

2009 ◽  
Vol 707 (1) ◽  
pp. 554-572 ◽  
Author(s):  
Zheng Zheng ◽  
Idit Zehavi ◽  
Daniel J. Eisenstein ◽  
David H. Weinberg ◽  
Y. P. Jing

2019 ◽  
Vol 489 (2) ◽  
pp. 2247-2253 ◽  
Author(s):  
Solène Chabanier ◽  
Marius Millea ◽  
Nathalie Palanque-Delabrouille

ABSTRACT We present a new compilation of inferences of the linear 3D matter power spectrum at redshift $z\, {=}\, 0$ from a variety of probes spanning several orders of magnitude in physical scale and in cosmic history. We develop a new lower noise method for performing this inference from the latest Ly α forest 1D power spectrum data. We also include cosmic microwave background (CMB) temperature and polarization power spectra and lensing reconstruction data, the cosmic shear two-point correlation function, and the clustering of luminous red galaxies. We provide a Dockerized Jupyter notebook housing the fairly complex dependences for producing the plot of these data, with the hope that groups in the future can help add to it. Overall, we find qualitative agreement between the independent measurements considered here and the standard ΛCDM cosmological model fit to the Planck data.


2007 ◽  
Vol 375 (1) ◽  
pp. 68-76 ◽  
Author(s):  
A. Collister ◽  
O. Lahav ◽  
C. Blake ◽  
R. Cannon ◽  
S. Croom ◽  
...  

Author(s):  
Ellie Kitanidis ◽  
Martin White

Abstract Cross-correlations between the lensing of the cosmic microwave background (CMB) and other tracers of large-scale structure provide a unique way to reconstruct the growth of dark matter, break degeneracies between cosmology and galaxy physics, and test theories of modified gravity. We detect a cross-correlation between DESI-like luminous red galaxies (LRGs) selected from DECaLS imaging and CMB lensing maps reconstructed with the Planck satellite at a significance of S/N = 27.2 over scales ℓmin = 30, ℓmax = 1000. To correct for magnification bias, we determine the slope of the LRG cumulative magnitude function at the faint limit as s = 0.999 ± 0.015, and find corresponding corrections on the order of a few percent for $C^{\kappa g}_{\ell }, C^{gg}_{\ell }$ across the scales of interest. We fit the large-scale galaxy bias at the effective redshift of the cross-correlation zeff ≈ 0.68 using two different bias evolution agnostic models: a HaloFit times linear bias model where the bias evolution is folded into the clustering-based estimation of the redshift kernel, and a Lagrangian perturbation theory model of the clustering evaluated at zeff. We also determine the error on the bias from uncertainty in the redshift distribution; within this error, the two methods show excellent agreement with each other and with DESI survey expectations.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 289
Author(s):  
Andrei I. Ryabinkov ◽  
Alexander D. Kaminker

The aim of this study is to search for quasi-periodical structures at moderate cosmological redshifts z ≲ 0.5. We mainly use the SDSS DR7 data on the luminous red galaxies (LRGs)with redshifts 0.16 ≤ z ≤ 0.47. At first, we analyze features (peaks) in the power spectra of radial (shell-like) distributions using separate angular sectors in the sky and calculate the power spectra within each sector. As a result, we found some signs of a large-scale anisotropic quasi-periodic structure detectable through 6 sectors out of a total of 144 sectors. These sectors are distinguished by large amplitudes of dominant peaks in their radial power spectra at wavenumbers k within a narrow interval of 0.05 < k < 0.07 h Mpc−1. Then, passing from a spherical coordinate system to a Cartesian one, we found a special direction such that the total distribution of LRG projections on it contains a significant (≳5σ) quasi-periodical component. We assume that we are dealing with a signature of a quasi-regular structure with a characteristic scale 116 ± 10 h−1 Mpc. Our assumption is confirmed by a preliminary analysis of the SDSS DR12 data.


Sign in / Sign up

Export Citation Format

Share Document