scholarly journals Cloud Cover and Aurora Contamination at Dome A in 2017 from KLCAM

Author(s):  
Xu Yang ◽  
Zhaohui Shang ◽  
Keliang Hu ◽  
Yi Hu ◽  
Bin Ma ◽  
...  

Abstract Dome A in Antarctica has many characteristics that make it an excellent site for astronomical observations, from the optical to the terahertz. Quantitative site testing is still needed to confirm the site’s properties. In this paper, we present a statistical analysis of cloud cover and aurora contamination from the Kunlun Cloud and Aurora Monitor (KLCAM). KLCAM is an automatic, unattended all-sky camera aiming for long-term monitoring of the usable observing time and optical sky background at Dome A. It was installed at Dome A in January 2017, worked through the austral winter, and collected over 47,000 images over 490 days. A semi-quantitative visual data analysis of cloud cover and auroral contamination was carried out by five individuals. The analysis shows that the night sky was free of clouds for 83 per cent of the time, which ranks Dome A highly in a comparison with other observatory sites. Although aurorae were detected somewhere on an image for nearly 45 per cent of the time, the chance of a point on the sky being affected by an aurora is small. The strongest auroral emission lines can be filtered out with customized filters.

Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 964
Author(s):  
Aleksandar Valjarević ◽  
Cezar Morar ◽  
Jelena Živković ◽  
Liudmyla Niemets ◽  
Dušan Kićović ◽  
...  

The use of weather satellite recordings has been growing rapidly over the last three decades. Determining the patterns between meteorological and topographical features is an important scientific job. Cloud cover analysis and properties can be of the utmost significance for potential cloud seeding. Here, the analysis of the cloud properties was conducted by means of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite recordings. The resolution of used data was 1 km2 within the period of 30 years (1989–2019). This research showed moderate changing of cloudiness in the territory of Serbia with a high cloudiness in February, followed by cloudiness in January and November. For the past three decades, May has been the month with the highest cloudiness. The regions in the east and south-west, and particularly in the west, have a high absolute cloudiness, which is connected with the high elevation of the country. By means of long term monitoring, the whole territory of Serbia was analyzed for the first time, in terms of cloudiness. Apart from the statistical and numerical results obtained, this research showed a connection between relief and clouds, especially in the winter season. Linear regression MK (Mann–Kendall test) has proven this theory right, connecting high elevation sides with high absolute cloudiness through the year.


Author(s):  
Barbara S. Minsker ◽  
Charles Davis ◽  
David Dougherty ◽  
Gus Williams

Kerntechnik ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. 513-522 ◽  
Author(s):  
U. Hampel ◽  
A. Kratzsch ◽  
R. Rachamin ◽  
M. Wagner ◽  
S. Schmidt ◽  
...  

2019 ◽  
Vol 21 (1) ◽  
pp. 87 ◽  
Author(s):  
Andrea G. Locatelli ◽  
Simone Ciuti ◽  
Primož Presetnik ◽  
Roberto Toffoli ◽  
Emma Teeling

Sign in / Sign up

Export Citation Format

Share Document