austral winter
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 45)

H-INDEX

28
(FIVE YEARS 3)

Author(s):  
Yuan Zhao ◽  
Zhiping Wen ◽  
Xiuzhen Li ◽  
Ruidan Chen ◽  
Guixing Chen

2021 ◽  
Vol 21 (21) ◽  
pp. 16575-16591
Author(s):  
Marco Gaetani ◽  
Benjamin Pohl ◽  
Maria del Carmen Alvarez Castro ◽  
Cyrille Flamant ◽  
Paola Formenti

Abstract. During austral winter, a compact low cloud deck over the South Atlantic contrasts with clear sky over southern Africa, where forest fires triggered by dry conditions emit large amounts of biomass burning aerosols (BBAs) in the free troposphere. Most of the BBA burden crosses the South Atlantic embedded in the tropical easterly flow. However, midlatitude synoptic disturbances can deflect part of the aerosol from the main transport path towards southern extratropics. In this study, the first objective classification of the synoptic variability controlling the spatial distribution of BBA in southern Africa and the South Atlantic during austral winter (August to October) is presented. By analysing atmospheric circulation data from reanalysis products, a six-class weather regime (WR) classification of the region is constructed. The classification reveals that the synoptic variability is composed of four WRs, representing disturbances travelling at midlatitudes, and two WRs accounting for pressure anomalies in the South Atlantic. The WR classification is then successfully used to characterise the aerosol spatial distribution in the region in the period 2003–2017, in both reanalysis products and station data. Results show that the BBA transport towards southern extratropics is controlled by weather regimes associated with midlatitude synoptic disturbances. In particular, depending on the relative position of the pressure anomalies along the midlatitude westerly flow, the BBA transport is deflected from the main tropical route towards southern Africa or the South Atlantic. Moreover, the WRs accounting for midlatitude disturbances show organised transition sequences, which allow one to illustrate the evolution of the BBA northerly transport across the region in the context of a wave pattern. The skill in characterising the BBA transport shown by the WR classification indicates the potential for using it as a diagnostic/predictive tool for the aerosol dynamics, which is a key component for the full understanding and modelling of the complex radiation–aerosol–cloud interactions controlling the atmospheric radiative budget in the region.


2021 ◽  
Author(s):  
Abdullah A. Fahad ◽  
Natalie J. Burls

AbstractSouthern hemisphere subtropical anticyclones are projected to change in a warmer climate during both austral summer and winter. A recent study of CMIP 5 & 6 projections found a combination of local diabatic heating changes and static-stability-induced changes in baroclinic eddy growth as the dominant drivers. Yet the underlying mechanisms forcing these changes still remain uninvestigated. This study aims to enhance our mechanistic understanding of what drives these Southern Hemisphere anticyclones changes during both seasons. Using an AGCM, we decompose the response to CO2-induced warming into two components: (1) the fast atmospheric response to direct CO2 radiative forcing, and (2) the slow atmospheric response due to indirect sea surface temperature warming. Additionally, we isolate the influence of tropical diabatic heating with AGCM added heating experiments. As a complement to our numerical AGCM experiments, we analyze the Atmospheric and Cloud Feedback Model Intercomparison Project experiments. Results from sensitivity experiments show that slow subtropical sea surface temperature warming primarily forces the projected changes in subtropical anticyclones through baroclinicity change. Fast CO2 atmospheric radiative forcing on the other hand plays a secondary role, with the most notable exception being the South Atlantic subtropical anticyclone in austral winter, where it opposes the forcing by sea surface temperature changes resulting in a muted net response. Lastly, we find that tropical diabatic heating changes only significantly influence Southern Hemisphere subtropical anticyclone changes through tropospheric wind shear changes during austral winter.


2021 ◽  
Vol 8 ◽  
Author(s):  
Gary Truong ◽  
Tracey L. Rogers

There are multiple blue whale acoustic populations found across the Southern Hemisphere. The different subspecies of blue whales feed in separate areas, but during their migration to lower-latitude breeding areas each year, Antarctic blue whales become sympatric with pygmy and Chilean blue whales. Few studies have compared the degree of this overlap of the Southern Hemisphere blue whale subspecies across ocean basins during their migration. Using up to 16 years of acoustic data, this study compares the broad seasonal presence of Antarctic blue whales, Chilean blue whales, and Southeast Indian Ocean (SEIO) pygmy blue whales across the Pacific and Indian Oceans. Antarctic blue whales were sympatric with the other two blue whale subspecies during the migrating season of every year. Despite this overlap, Chilean and pygmy blue whale detections peaked earlier during the austral autumn (April–May) while Antarctic blue whale detections peaked later during the austral winter (June). Chilean (Pacific Ocean) and SEIO (Indian Ocean) pygmy blue whales showed similar seasonal patterns in detections despite occurring in different ocean basins. Though we have shown that Antarctic blue whales have the potential to encounter other blue whale subspecies during the breeding season, these distinct groups have remained acoustically stable through time. Further understanding of where these whales migrate will enable a better insight as to how these subspecies continue to remain separate.


2021 ◽  
Author(s):  
Yuan Zhao ◽  
Zhiping Wen ◽  
Xiuzhen Li ◽  
Ruidan Chen ◽  
Guixing Chen

Abstract The Mascarene High (MH), is a key component of the Asian-Africa-Australia monsoon system in austral winter (JJA). Its three-dimensional structures and maintenance mechanisms are examined in this study. It is a low-level subtropical high dominating the southern Africa and South Indian Ocean, characterized by a northwestward tilt with height, which is attributed to its spatially inhomogeneous thermal structure. Large-scale subsidence characterizes the main body of the MH, with the stronger subsidence to the east than to the west. Diagnosis using the complete form of the vertical vorticity tendency equation shows that the anticyclonic structure of the MH, which can be described by the distribution of meridional wind, is maintained mainly by the vertical gradient of diabatic heating, change in static stability, and friction dissipation. In particular, a combination of sensible heating and longwave radiative cooling results in a vertical decreasing gradient of diabatic heating in the lower troposphere. It generates the stronger southerlies over the subtropical South Indian Ocean than over the southern Africa. Meanwhile, over the South Indian Ocean, the increasing static stability as a result of the downward transport of a more stable atmosphere partly offsets the effect of the vertical gradient of diabatic heating, and southerlies still prevail there. Over the southern Africa, topographic friction dissipation induces northerlies, balancing the effect of the vertical gradient of diabatic heating with a stronger magnitude, and northerlies prevail.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marcus Silva ◽  
Moacyr Araujo ◽  
Fábio Geber ◽  
Carmen Medeiros ◽  
Julia Araujo ◽  
...  

The hydrodynamics and the occurrence of topographic upwelling around the northern Brazilian seamount chain were investigated. Meteorological and physical oceanographic data collected under the REVIZEE-NE Program cruises around the Aracati Bank, the major and highly productive seamount in the area, were analyzed and used to force and validate simulations using the 3D Princeton Ocean Model (3D POM). The Tropical Water mass in the top 150-m layer and the South Atlantic Central Water (SACW) beneath it and down to a depth of 670 m was present. The thickness of the barrier layer varied seasonally, being thinner (2 m) during the austral spring (October–December) and thicker (20 m) during the austral autumn (April–June) when winds were stronger. The surface mixed and isothermal layers in the austral winter (July–September) were located at depths of 84 and 96 m, respectively. During the austral spring, those layers were located at depths of 6 and 8 m, respectively. The mean wind shear energy was 9.8 × 10–4 m2 s–2, and the energy of the surface gravity wave break was 10.8 × 10–2 m2 s–2, and both served to enhance vertical mixing in the area. A permanent thermocline between the 70- and 150-m depths was present throughout the year. The isohaline distribution followed an isotherm pattern of variation, but at times, the formation of low-salinity eddies was verified on the bank slope. The 3D POM model reproduced the thermohaline structure accurately. Temperature and salinity profiles indicated the existence of vertical water displacements over the bank and along the direction of the North Brazil Current, which is the strongest western boundary current crossing the equatorial Atlantic. The kinematic structure observed in the simulations indicated vertical velocities of O (10–3 m.s–1) in the upstream region of the bank during austral winter and summer seasons. During the summer, the most important vertical velocities were localized below the lower limit of the euphotic zone; while during the austral winter, these velocities were within the euphotic zone, thereby favoring primary producers.


2021 ◽  
Vol 34 (10) ◽  
pp. 4009-4022
Author(s):  
Z. E. Gillett ◽  
H. H. Hendon ◽  
J. M. Arblaster ◽  
E.-P. Lim

AbstractInterannual variability of the Southern Hemisphere subtropical jet (STJ) is assessed using atmospheric reanalyses during 1979–2018. The focus is on the austral winter season when the STJ is strongest and most distinct from the midlatitude eddy-driven jet (EDJ). Variations in the intensity and latitudinal position of the STJ are diagnosed using an index developed to discriminate between variations associated with the EDJ. STJ intensity and position variations are found to be tied to different mechanisms. An intensification of the STJ is associated with enhanced divergent outflow from diabatic heating over the equatorial Pacific Ocean, primarily resulting from eastern Pacific or canonical El Niño. This intensification is associated with a narrowing of the STJ and an in-place weakening of the EDJ. An equatorward-shifted STJ, however, appears to be eddy driven and is associated with an acceleration and poleward displacement of the EDJ, which projects onto the positive polarity of the southern annular mode. As has previously been reported, El Niño Modoki (or central Pacific El Niño) can act to shift the EDJ poleward during austral winter; thus, a possible pathway for changes in the position of the STJ is via tropically forced changes in the position of the EDJ. In contrast to previous studies, we also highlight a weakening and poleward shift of the STJ in association with an expansion of the Hadley circulation.


2021 ◽  
Author(s):  
Marco Gaetani ◽  
Benjamin Pohl ◽  
Maria del Carmen Alvarez Castro ◽  
Cyrille Flamant ◽  
Paola Formenti

Abstract. During austral winter, a compact low cloud deck over South Atlantic contrasts with clear sky over southern Africa, where forest fires triggered by dry conditions emit large amount of biomass burning aerosols (BBA) in the free troposphere. Most of the BBA burden crosses South Atlantic embedded in the tropical easterly flow. However, midlatitude synoptic disturbances can deflect part of the aerosol from the main transport path towards southern extratropics. In this study, a characterisation of the synoptic variability controlling the spatial distribution of BBA in southern Africa and South Atlantic during austral winter (August to October) is presented. By analysing atmospheric circulation data from reanalysis products, a 6-class weather regime (WR) classification of the region is constructed. The classification reveals that the synoptic variability is composed by four WRs representing disturbances travelling at midlatitudes, and two WRs accounting for pressure anomalies in the South Atlantic. The WR classification is then successfully used to characterise the aerosol spatial distribution in the region in the period 2003–2017, in both reanalysis products and station data. Results show that the BBA transport towards southern extratropics is controlled by weather regimes associated with midlatitude synoptic disturbances. In particular, depending on the relative position of the pressure anomalies along the midlatitude westerly flow, the BBA transport is deflected from the main tropical route towards southern Africa or the South Atlantic. This paper presents the first objective classification of the winter synoptic circulation over South Atlantic and southern Africa. The classification shows skills in characterising the BBA transport, indicating the potential for using it as a diagnostic/predictive tool for aerosol dynamics, which is a key component for the full understanding and modelling of the complex radiation-aerosol-cloud interactions controlling the atmospheric radiative budget in the region.


Sign in / Sign up

Export Citation Format

Share Document