scholarly journals A magnetic accretion switch in pre-cataclysmic binaries

2013 ◽  
Vol 437 (4) ◽  
pp. 3842-3847 ◽  
Author(s):  
Jeremy J. Drake ◽  
Cecilia Garraffo ◽  
Dai Takei ◽  
Boris Gaensicke
Keyword(s):  
1989 ◽  
Vol 114 ◽  
pp. 440-442
Author(s):  
M. Politano ◽  
R. F. Webbink

A zero-age cataclysmic binary (ZACB) we define as a binary system at the onset of interaction as a cataclysmic variable. We present here the results of calculations of the distributions of white dwarf masses and of orbital periods in ZACBs, due to binaries present in a stellar population which has undergone continuous, constant star formation for 1010 years.Distributions of ZACBs were calculated for binaries formed t years ago, for log t = 7.4 (the youngest age at which viable ZACBs can form) to log t = 10.0 (the assumed age of the Galactic disk), in intervals of log t = 0.1. These distributions were then integrated over time to obtain the ZACB distribution for a constant rate of star formation. To compute the individual distributions for a given t, we require the density of systems forming (number of pre-cataclysmics forming per unit volume of orbital parameter space), n£(t), and the rates at which the radii of the secondary and of its Roche lobe are changing in time, s (t) and L, s (t), respectively. In calculating nf(t), we assume that the distribution of the orbital parameters in primordial (ZAMS) binaries may be written as the product of the distribution of masses of ZAMS stars (Miller and Scalo 1979), the distribution of mass ratios in ZAMS binaries (cf. Popova, et al., 1982), and the distribution of orbital periods in ZAMS binaries (Abt 1983). In transforming the the orbital parameters from progenitor (ZAMS) to offspring (ZACB) binaries, we assume that all of the orbital energy deposited into the envelope during the common envelope phase leading to ZACB formation goes into unbinding that envelope. R.L, s (t) is determined from orbital angular momentum loss rates due to gravitational radiation (Landau and Lifshitz 1951) and magnetic braking (γ = 2 in Rappaport, Verbunt, and Joss 1983). We turn off magnetic braking if the secondary is completely convective.


1998 ◽  
Vol 110 (754) ◽  
pp. 1405-1411 ◽  
Author(s):  
John R. Thorstensen ◽  
Cynthia J. Taylor ◽  
Jonathan Kemp
Keyword(s):  

2002 ◽  
Vol 114 (791) ◽  
pp. 65-73 ◽  
Author(s):  
Joseph Patterson ◽  
Robert E. Fried ◽  
Robert Rea ◽  
Jonathan Kemp ◽  
Catherine Espaillat ◽  
...  
Keyword(s):  

1999 ◽  
Vol 111 (764) ◽  
pp. 1275-1280 ◽  
Author(s):  
Robert E. Fried ◽  
Jonathan Kemp ◽  
Joseph Patterson ◽  
David R. Skillman ◽  
Alon Retter ◽  
...  
Keyword(s):  

1977 ◽  
Vol 42 ◽  
pp. 365-370
Author(s):  
Józef Smak

The mass loss from cataclysmic binaries seems an important and worth studying phenomenon for a number of reasons. It is probably enough to mention only two of them:(a) Whenever we can directly observe the ejected material, determine its amount and the rate of mass loss, as well as its chemical composition (this being the case of the expanding envelopes of novae), we are getting a good insight into the basic physical mechanisms responsible for the observed phenomena.(b) The mass loss (together with the mass transfer) and the loss of the orbital angular momentum are related directly to the dynamical evolution of a binary system and - indirectly - to the evolution of its components.


2015 ◽  
Vol 2 (1) ◽  
pp. 183-187 ◽  
Author(s):  
L. Y. Zhu ◽  
S. B. Qian ◽  
E.-G. Zhao ◽  
E. Fernández Lajús ◽  
Z.-T. Han

The sdB-type close binaries are believed to have experienced a common-envelope phase and may evolve into cataclysmic binaries (CVs). About 10% of all known sdB binaries are eclipsing binaries consisting of very hot subdwarf primaries and low-mass companions with short orbital periods. The eclipse profiles of these systems are very narrow and deep, which benefits the determination of high precise eclipsing times and makes the detection of small and close-in tertiary bodies possible. Since 2006 we have monitored some sdB-type eclipsing binaries to search for the close-in substellar companions by analyzing the light travel time effect. Here some progresses of the program are reviewed and the formation of sdB-type binary is discussed.


Sign in / Sign up

Export Citation Format

Share Document