magnetic braking
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 38)

H-INDEX

39
(FIVE YEARS 5)

2021 ◽  
Vol 922 (2) ◽  
pp. 174
Author(s):  
Kenny X. Van ◽  
Natalia Ivanova

Abstract We present a new method for constraining the mass transfer evolution of low-mass X-ray binaries (LMXBs)—a reverse population synthesis technique. This is done using the detailed 1D stellar evolution code MESA (Modules for Experiments in Stellar Astrophysics) to evolve a high-resolution grid of binary systems spanning a comprehensive range of initial donor masses and orbital periods. We use the recently developed convection and rotation-boosted (CARB) magnetic braking scheme. The CARB magnetic braking scheme is the only magnetic braking prescription capable of reproducing an entire sample of well-studied persistent LMXBs—those with mass ratios, periods, and mass transfer rates that have been observationally determined. Using the reverse population synthesis technique, where we follow any simulated system that successfully reproduces an observed LMXB backward, we have constrained possible progenitors for each observed well-studied persistent LMXB. We also determined that the minimum number of LMXB formations in the Milky Way is 1500 per Gyr if we exclude Cyg X-2. For Cyg X-2, the most likely formation rate is 9000 LMXB Gyr−1. The technique we describe can be applied to any observed LMXB with well-constrained mass ratio, period, and mass transfer rate. With the upcoming GAIA DR3 containing information on binary systems, this technique can be applied to the data release to search for progenitors of observed persistent LMXBs.


Author(s):  
H. F. Song ◽  
G. Meynet ◽  
A. Maeder ◽  
N. Mowlavi ◽  
S. R. Stroud ◽  
...  

2021 ◽  
Author(s):  
Oliver J. Hall ◽  
Guy R. Davies ◽  
Jennifer van Saders ◽  
Martin B. Nielsen ◽  
Mikkel N. Lund ◽  
...  

Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 19
Author(s):  
Walter van van Rensbergen ◽  
Jean-Pierre de de Greve

In earlier papers, we presented a binary evolutionary code for the purpose of reproducing the orbital parameters, masses, radii, and location in the Hertzsprung Russell diagram (abbreviated as HRD) of well-observed Algol systems. In subsequent versions, the effects of mass and angular momentum losses and tidal coupling were included in order to produce the observed distributions of orbital periods and mass ratios of Algol-type binaries. The mass loss includes stellar wind and possible liberal evolution, when the gainer star is not capable to absorb all of the matter during mass transfer from the donor star. We added magnetic braking to our code to better reproduce the observed equatorial velocities. Large equatorial velocities of mass-gaining stars are now lowered by tidal interaction and magnetic braking. Tides are mainly at work at short orbital periods, leaving magnetic braking alone at work during longer orbital periods. The observed values of the equatorial velocities of mass gainers in Algol-type binaries are mostly well reproduced by our code. According to our models, Algols have short periods with a strong magnetic field.


2021 ◽  
Vol 503 (3) ◽  
pp. 3540-3551 ◽  
Author(s):  
Hai-Liang Chen ◽  
Thomas M Tauris ◽  
Zhanwen Han ◽  
Xuefei Chen

ABSTRACT Close-orbit low-mass X-ray binaries (LMXBs), radio binary millisecond pulsars (BMSPs) with extremely low-mass helium white dwarfs (ELM He WDs) and ultra-compact X-ray binaries (UCXBs) are all part of the same evolutionary sequence. It is therefore of uttermost importance to understand how these populations evolve from one specie to another. Moreover, UCXBs are important gravitational wave (GW) sources and can be detected by future space-borne GW observatories. However, the formation and evolutionary link between these three different populations of neutron star (NS) binaries are not fully understood. In particular, a peculiar fine-tuning problem has previously been demonstrated for the formation of these systems. In this investigation, we test a newly suggested magnetic braking prescription and model the formation and evolution of LMXBs. We compute a grid of binary evolution models and present the initial parameter space of the progenitor binaries which successfully evolve all the way to produce UCXBs. We find that the initial orbital period range of LMXBs, which evolve into detached NS + ELM He WD binaries and later UCXBs, becomes significantly wider compared to evolution with a standard magnetic braking prescription, and thus helps to relieve the fine-tuning problem. However, we also find that formation of wide-orbit BMSPs is prohibited for strong versions of this new magnetic braking prescription, which therefore calls for a revision of the prescription. Finally, we present examples of the properties of UCXBs as Galactic GW sources and discuss their detection by the LISA, TianQin, and Taiji observatories.


2021 ◽  
Author(s):  
Laszlo Kazup ◽  
Angela Varadine Szarka

AbstractThis paper introduces research on magnetic fields with special attention to developing a new method for braking fast-changing alternating movements. This work is part of a research project aiming to find the most efficient and accurate method for development of linear magnetic brake for dynamic tests in industrial applications. In applications requiring precisely defined and generated characteristics of the braking force, highly reliable and accurate function between the braking force and the controlling current should be investigated.The goal of this research is to develop accurate and reliable control methods for fast changing magnetic fields used in automatic test solutions of different devices and tools, which have been tested manually before.


2021 ◽  
Vol 909 (2) ◽  
pp. 174
Author(s):  
Zhu-Ling Deng ◽  
Xiang-Dong Li ◽  
Zhi-Fu Gao ◽  
Yong Shao
Keyword(s):  

2021 ◽  
Vol 502 (4) ◽  
pp. 4911-4929
Author(s):  
Wenrui Xu ◽  
Matthew W Kunz

ABSTRACT We investigate the formation and early evolution of a protostellar disc from a magnetized prestellar core using non-ideal magnetohydrodynamic (MHD) simulations including ambipolar diffusion and Ohmic dissipation. The dynamical contraction of the prestellar core ultimately leads to the formation of a first hydrostatic core, after ambipolar diffusion decouples the magnetic field from the predominantly neutral gas. The hydrostatic core accumulates angular momentum from the infalling material, evolving into a rotationally supported torus; this ‘first hydrostatic torus’ then forms an accreting protostar and a rotationally supported disc. The disc spreads out by gravitational instability, reaching ∼30 au in diameter at ∼3 kyr after protostar formation. The total mass and angular momentum of the protostar–disc system are determined mainly by accretion of gas from an infalling pseudo-disc, which has low specific angular momentum because of magnetic braking; their removal from the protostar–disc system by outflow and disc magnetic braking are negligible, in part because the magnetic field is poorly coupled there. The redistribution of angular momentum within the protostar–disc system is facilitated mainly by gravitational instability; this allows formation of relatively large discs even when the specific angular momentum of infalling material is low. We argue that such discs should remain marginally unstable as they grow (with Toomre Q ∼ 1–2), an idea that is broadly consistent with recent observational estimates for Class 0/I discs. We discuss the numerical convergence of our results, and show that properly treating the inner boundary condition is crucial for achieving convergence at an acceptable computational cost.


Sign in / Sign up

Export Citation Format

Share Document