scholarly journals Detection of distinct power spectra in soft and hard X-ray bands in the hard state of GRS 1915+105★

2014 ◽  
Vol 441 (2) ◽  
pp. 1177-1185 ◽  
Author(s):  
H. Stiele ◽  
W. Yu
Keyword(s):  
X Ray ◽  
2020 ◽  
Vol 636 ◽  
pp. A51 ◽  
Author(s):  
Maria Hirsch ◽  
Katja Pottschmidt ◽  
David M. Smith ◽  
Arash Bodaghee ◽  
Marion Cadolle Bel ◽  
...  

We present the spectral and timing evolution of the persistent black hole X-ray binary GRS 1758−258 based on almost 12 years of observations using the Rossi X-ray Timing Explorer Proportional Counter Array. While the source was predominantly found in the hard state during this time, it entered the thermally dominated soft state seven times. In the soft state GRS 1758−258 shows a strong decline in flux above 3 keV rather than the pivoting flux around 10 keV more commonly shown by black hole transients. In its 3–20 keV hardness intensity diagram, GRS 1758−258 shows a hysteresis of hard and soft state fluxes typical for transient sources in outburst. The RXTE-PCA and RXTE-ASM long-term light curves do not show any orbital modulations in the range of 2–30 d. However, in the dynamic power spectra significant peaks drift between 18.47 and 18.04 d for the PCA data, while less significant signatures between 19 d and 20 d are seen for the ASM data as well as for the Swift/BAT data. We discuss different models for the hysteresis behavior during state transitions as well as possibilities for the origin of the long term variation in the context of a warped accretion disk.


1996 ◽  
Vol 165 ◽  
pp. 313-319
Author(s):  
Mark H. Finger ◽  
Robert B. Wilson ◽  
B. Alan Harmon ◽  
William S. Paciesas

A “giant” outburst of A 0535+262, a transient X-ray binary pulsar, was observed in 1994 February and March with the Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma-Ray Observatory. During the outburst power spectra of the hard X-ray flux contained a QPO-like component with a FWHM of approximately 50% of its center frequency. Over the course of the outburst the center frequency rose smoothly from 35 mHz to 70 mHz and then fell to below 40 mHz. We compare this QPO frequency with the neutron star spin-up rate, and discuss the observed correlation in terms of the beat frequency and Keplerian frequency QPO models in conjunction with the Ghosh-Lamb accretion torque model.


2021 ◽  
Vol 502 (1) ◽  
pp. L72-L78
Author(s):  
K Mohamed ◽  
E Sonbas ◽  
K S Dhuga ◽  
E Göğüş ◽  
A Tuncer ◽  
...  

ABSTRACT Similar to black hole X-ray binary transients, hysteresis-like state transitions are also seen in some neutron-star X-ray binaries. Using a method based on wavelets and light curves constructed from archival Rossi X-ray Timing Explorer observations, we extract a minimal timescale over the complete range of transitions for 4U 1608-52 during the 2002 and 2007 outbursts and the 1999 and 2000 outbursts for Aql X-1. We present evidence for a strong positive correlation between this minimal timescale and a similar timescale extracted from the corresponding power spectra of these sources.


2012 ◽  
Author(s):  
John A. Tomsick ◽  
Kazutaka Yamaoka ◽  
Emrah Kalemci ◽  
Stéphane Corbel ◽  
Philip Kaaret ◽  
...  
Keyword(s):  
X Ray ◽  

2008 ◽  
Vol 488 (2) ◽  
pp. 441-450 ◽  
Author(s):  
C. D'Angelo ◽  
D. Giannios ◽  
C. Dullemond ◽  
H. Spruit
Keyword(s):  
X Ray ◽  

2003 ◽  
Vol 403 (1) ◽  
pp. L15-L18 ◽  
Author(s):  
P. Reig ◽  
N. D. Kylafis ◽  
D. Giannios

2007 ◽  
Vol 659 (1) ◽  
pp. 549-560 ◽  
Author(s):  
M. Cadolle Bel ◽  
M. Ribo ◽  
J. Rodriguez ◽  
S. Chaty ◽  
S. Corbel ◽  
...  

2020 ◽  
Vol 492 (4) ◽  
pp. 5271-5279 ◽  
Author(s):  
Nick Higginbottom ◽  
Christian Knigge ◽  
Stuart A Sim ◽  
Knox S Long ◽  
James H Matthews ◽  
...  

ABSTRACT X-ray signatures of outflowing gas have been detected in several accreting black hole binaries, always in the soft state. A key question raised by these observations is whether these winds might also exist in the hard state. Here, we carry out the first full-frequency radiation hydrodynamic simulations of luminous (${L = 0.5 \, L_{\mathrm{\mathrm{ Edd}}}}$) black hole X-ray binary systems in both the hard and the soft state, with realistic spectral energy distributions (SEDs). Our simulations are designed to describe X-ray transients near the peak of their outburst, just before and after the hard-to-soft state transition. At these luminosities, it is essential to include radiation driving, and we include not only electron scattering, but also photoelectric and line interactions. We find powerful outflows with ${\dot{M}_{\mathrm{ wind}} \simeq 2 \, \dot{M}_{\mathrm{ acc}}}$ are driven by thermal and radiation pressure in both hard and soft states. The hard-state wind is significantly faster and carries approximately 20 times as much kinetic energy as the soft-state wind. However, in the hard state the wind is more ionized, and so weaker X-ray absorption lines are seen over a narrower range of viewing angles. Nevertheless, for inclinations ≳80°, blueshifted wind-formed Fe xxv and Fe xxvi features should be observable even in the hard state. Given that the data required to detect these lines currently exist for only a single system in a luminous hard state – the peculiar GRS 1915+105 – we urge the acquisition of new observations to test this prediction. The new generation of X-ray spectrometers should be able to resolve the velocity structure.


2019 ◽  
Vol 486 (2) ◽  
pp. 2964-2975 ◽  
Author(s):  
Bari Maqbool ◽  
Sneha Prakash Mudambi ◽  
R Misra ◽  
J S Yadav ◽  
S B Gudennavar ◽  
...  

Abstract We report the results from analysis of six observations of Cygnus X-1 by Large Area X-ray Proportional Counter (LAXPC) and Soft X-ray Telescope (SXT) onboard AstroSat, when the source was in the hard spectral state as revealed by the broad-band spectra. The spectra obtained from all the observations can be described by a single-temperature Comptonizing region with disc and reflection components. The event mode data from LAXPC provides unprecedented energy dependent fractional root mean square (rms) and time-lag at different frequencies which we fit with empirical functions. We invoke a fluctuation propagation model for a simple geometry of a truncated disc with a hot inner region. Unlike other propagation models, the hard X-ray emission (>4 keV) is assumed to be from the hot inner disc by a single-temperature thermal Comptonization process. The fluctuations first cause a variation in the temperature of the truncated disc and then the temperature of the inner disc after a frequency dependent time delay. We find that the model can explain the energy dependent rms and time-lag at different frequencies.


Sign in / Sign up

Export Citation Format

Share Document