scholarly journals The stellar mass function and star formation rate–stellar mass relation of galaxies at z ∼ 4–7

2015 ◽  
Vol 448 (4) ◽  
pp. 3001-3021 ◽  
Author(s):  
A. Katsianis ◽  
E. Tescari ◽  
J. S. B. Wyithe
2019 ◽  
Vol 491 (4) ◽  
pp. 5083-5100
Author(s):  
Jaime Salcido ◽  
Richard G Bower ◽  
Tom Theuns

ABSTRACT We introduce a simple analytic model of galaxy formation that links the growth of dark matter haloes in a cosmological background to the build-up of stellar mass within them. The model aims to identify the physical processes that drive the galaxy-halo co-evolution through cosmic time. The model restricts the role of baryonic astrophysics to setting the relation between galaxies and their haloes. Using this approach, galaxy properties can be directly predicted from the growth of their host dark matter haloes. We explore models in which the effective star formation efficiency within haloes is a function of mass (or virial temperature) and independent of time. Despite its simplicity, the model reproduces self-consistently the shape and evolution of the cosmic star formation rate density, the specific star formation rate of galaxies, and the galaxy stellar mass function, both at the present time and at high redshifts. By systematically varying the effective star formation efficiency in the model, we explore the emergence of the characteristic shape of the galaxy stellar mass function. The origin of the observed double Schechter function at low redshifts is naturally explained by two efficiency regimes in the stellar to halo mass relation, namely, a stellar feedback regulated stage, and a supermassive black hole regulated stage. By providing a set of analytic differential equations, the model can be easily extended and inverted, allowing the roles and impact of astrophysics and cosmology to be explored and understood.


2020 ◽  
Vol 499 (2) ◽  
pp. 2896-2911 ◽  
Author(s):  
Edward N Taylor ◽  
Michelle E Cluver ◽  
Alan Duffy ◽  
Pol Gurri ◽  
Henk Hoekstra ◽  
...  

ABSTRACT We use KiDS weak lensing data to measure variations in mean halo mass as a function of several key galaxy properties (namely stellar colour, specific star formation rate, Sérsic index, and effective radius) for a volume-limited sample of GAMA galaxies in a narrow stellar mass range [M* ∼ (2–5) × 1010 M⊙]. This mass range is particularly interesting, inasmuch as it is where bimodalities in galaxy properties are most pronounced, and near to the break in both the galaxy stellar mass function and the stellar-to-halo mass relation (SHMR). In this narrow mass range, we find that both size and Sérsic index are better predictors of halo mass than either colour or SSFR, with the data showing a slight preference for Sérsic index. In other words, we find that mean halo mass is more tightly correlated with galaxy structure than either past star formation history or current star formation rate. Our results lead to an approximate lower bound on the dispersion in halo masses among log M* ≈ 10.5 galaxies: We find that the dispersion is ≳0.3 dex. This would imply either that offsets from the mean SHMR are closely coupled to size/structure or that the dispersion in the SHMR is larger than what past results have suggested. Our results thus provide new empirical constraints on the relationship between stellar and halo mass assembly at this particularly interesting mass range.


2018 ◽  
Vol 617 ◽  
pp. A33 ◽  
Author(s):  
P. Andreani ◽  
A. Boselli ◽  
L. Ciesla ◽  
R. Vio ◽  
L. Cortese ◽  
...  

Aims.We discuss the results of the relationships between theK-band and stellar mass, FIR luminosities, star formation rate, and the masses of the dust and gas of nearby galaxies computing the bivariateK-band-luminosity function (BLF) and bivariateK-band-mass function (BMF) of theHerschelReference Survey (HRS), a volume-limited sample with full wavelength coverage.Methods.We derive the BLFs and BMFs from theK-band and stellar mass, FIR luminosities, star formation rate, dust and gas masses cumulative distributions using a copula method, which is outlined in detail. The use of the computed bivariate taking into account the upper limits allows us to derive a more solid statistical ground for the relationship between the observed physical quantities.Results.The analysis shows that the behaviour of the morphological (optically selected) subsamples is quite different. A statistically meaningful result can be obtained over the whole HRS sample only from the relationship between theK-band and the stellar mass, while for the remaining physical quantities (dust and gas masses, far-infrared luminosity, and star formation rate), the analysis is distinct for late-type (LT) and early-type galaxies (ETG). However, the number of ETGs is small to perform a robust statistical analysis, and in most of the case results are discussed only for the LTG subsample. The luminosity and mass functions (LFs, MFs) of LTGs are generally dependent on theK-band and the various dependencies are discussed in detail. We are able to derive the corresponding LFs and MFs and compare them with those computed with other samples. Our statistical analysis allows us to characterise the HRS which, although non-homogeneously selected and partially biased towards low IR luminosities, may be considered as representative of the local LT galaxy population.


2013 ◽  
Vol 434 (1) ◽  
pp. 423-436 ◽  
Author(s):  
Yusei Koyama ◽  
Ian Smail ◽  
Jaron Kurk ◽  
James E. Geach ◽  
David Sobral ◽  
...  

2015 ◽  
Vol 815 (2) ◽  
pp. 98 ◽  
Author(s):  
Irene Shivaei ◽  
Naveen A. Reddy ◽  
Alice E. Shapley ◽  
Mariska Kriek ◽  
Brian Siana ◽  
...  

Author(s):  
Mahavir Sharma ◽  
Tom Theuns

Abstract We present the Iκεα model of galaxy formation, in which a galaxy’s star formation rate is set by the balance between energy injected by feedback from massive stars and energy lost by the deepening of the potential of its host dark matter halo due to cosmological accretion. Such a balance is secularly stable provided that the star formation rate increases with the pressure in the star forming gas. The Iκεα model has four parameters that together control the feedback from star formation and the cosmological accretion rate onto a halo. Iκεα reproduces accurately the star formation rate as a function of halo mass and redshift in the eagle hydrodynamical simulation, even when all four parameters are held constant. It predicts the emergence of a star forming main sequence along which the specific star formation rate depends weakly on stellar mass with an amplitude that increases rapidly with redshift. We briefly discuss the emerging mass-metallicity relation, the evolution of the galaxy stellar mass function, and an extension of the model that includes feedback from active galactic nuclei (AGN). These self-regulation results are independent of the star formation law and the galaxy’s gas content. Instead, star forming galaxies are shaped by the balance between stellar feedback and cosmological accretion, with accurately accounting for energy losses associated with feedback a crucial ingredient.


2020 ◽  
Vol 499 (3) ◽  
pp. 3061-3070
Author(s):  
Julie Nantais ◽  
Gillian Wilson ◽  
Adam Muzzin ◽  
Lyndsay J Old ◽  
Ricardo Demarco ◽  
...  

ABSTRACT We calculate H α-based star formation rates and determine the star formation rate–stellar mass relation for members of three Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS) clusters at z ∼ 1.6 and serendipitously identified field galaxies at similar redshifts to the clusters. We find similar star formation rates in cluster and field galaxies throughout our range of stellar masses. The results are comparable to those seen in other clusters at similar redshifts, and consistent with our previous photometric evidence for little quenching activity in clusters. One possible explanation for our results is that galaxies in our z ∼ 1.6 clusters have been accreted too recently to show signs of environmental quenching. It is also possible that the clusters are not yet dynamically mature enough to produce important environmental quenching effects shown to be important at low redshift, such as ram-pressure stripping or harassment.


2012 ◽  
Vol 10 (H16) ◽  
pp. 374-374
Author(s):  
Matthieu Bethermin

AbstractSome recent works indicate that most star-forming galaxies follow a main sequence in the SFR-stellar mass plane with a surprisingly low scatter of ≈0.2 dex, suggesting that the star formation in these objects is driven by secular processes. Nevertheless, Herschel identified a population of starbursting galaxies, probably triggered by mergers, which display a large excess of specific star formation rate (sSFR=SFR/Mstar) compared to the main sequence. We will present a new set of models for the contribution of these two populations to the IR/sub-mm luminosity function, but also to source counts selected at various wavelengths.Our model is based on the stellar mass function of star-forming galaxies, the distribution of sSFR measured at z=2 and its double-Gaussian decomposition, and the observed evolution of the main sequence in the sSFR-Mass plane as a function of redshift. We found that the non-Schechter bright-end of the LF is due to the starbursting galaxies, which represent only 4% in number density and 15% in luminosity density. This fraction of starbursts is remarkably constant with the redshift at 0<z<2, contrary to naive expectation from hierarchical merging. It thus suggests that the majority of stars in the Universe were formed through secular processes. We will then discuss the contribution of starbursting and main sequence galaxies to the number counts and the selection effects towards starbursts sources for various flux-limited IR/sub-mm samples.We will also present studies of the clustering properties of the main sequence and starburst galaxies at z 2. These measurements suggest strong links between star formation rate, stellar mass and halo mass in the main sequence galaxies. In addition, we will present some clues suggesting that main sequence and starbursting galaxies follows the same M*-Mhalo relation.”


Sign in / Sign up

Export Citation Format

Share Document