scholarly journals Weak lensing light-cones in modified gravity simulations with and without massive neutrinos

2018 ◽  
Vol 481 (2) ◽  
pp. 2813-2828 ◽  
Author(s):  
Carlo Giocoli ◽  
Marco Baldi ◽  
Lauro Moscardini
2020 ◽  
Vol 498 (4) ◽  
pp. 5299-5316
Author(s):  
D Munshi ◽  
J D McEwen

ABSTRACT We compute the low-ℓ limit of the family of higher order spectra for projected (2D) weak lensing convergence maps. In this limit these spectra are computed to an arbitrary order using tree-level perturbative calculations. We use the flat-sky approximation and Eulerian perturbative results based on a generating function approach. We test these results for the lower order members of this family, i.e. the skew- and kurt-spectra against state-of-the-art simulated all-sky weak lensing convergence maps and find our results to be in very good agreement. We also show how these spectra can be computed in the presence of a realistic sky-mask and Gaussian noise. We generalize these results to 3D and compute the equal-time higher order spectra. These results will be valuable in analysing higher order statistics from future all-sky weak lensing surveys such as the Euclid survey at low-ℓ modes. As illustrative examples, we compute these statistics in the context of the Horndeski and beyond Horndeski theories of modified gravity. They will be especially useful in constraining theories such as the Gleyzes–Langlois–Piazza–Vernizzi (GLPV) theories and degenerate higher order scalar-tensor theories as well as the commonly used normal-branch of Dvali–Gabadadze–Porrati model, clustering quintessence models and scenarios with massive neutrinos.


2018 ◽  
Vol 619 ◽  
pp. A38 ◽  
Author(s):  
Austin Peel ◽  
Valeria Pettorino ◽  
Carlo Giocoli ◽  
Jean-Luc Starck ◽  
Marco Baldi

General relativity (GR) has been well tested up to solar system scales, but it is much less certain that standard gravity remains an accurate description on the largest, that is cosmological, scales. Many extensions to GR have been studied that are not yet ruled out by the data, including by that of the recent direct gravitational wave detections. Degeneracies among the standard model (ΛCDM) and modified gravity (MG) models, as well as among different MG parameters, must be addressed in order to best exploit information from current and future surveys and to unveil the nature of dark energy. We propose various higher-order statistics in the weak-lensing signal as a new set of observables able to break degeneracies between massive neutrinos and MG parameters. We have tested our methodology on so-called f(R) models, which constitute a class of viable models that can explain the accelerated universal expansion by a modification of the fundamental gravitational interaction. We have explored a range of these models that still fit current observations at the background and linear level, and we show using numerical simulations that certain models which include massive neutrinos are able to mimic ΛCDM in terms of the 3D power spectrum of matter density fluctuations. We find that depending on the redshift and angular scale of observation, non-Gaussian information accessed by higher-order weak-lensing statistics can be used to break the degeneracy between f(R) models and ΛCDM. In particular, peak counts computed in aperture mass maps outperform third- and fourth-order moments.


2021 ◽  
Vol 650 ◽  
pp. A113
Author(s):  
Margot M. Brouwer ◽  
Kyle A. Oman ◽  
Edwin A. Valentijn ◽  
Maciej Bilicki ◽  
Catherine Heymans ◽  
...  

We present measurements of the radial gravitational acceleration around isolated galaxies, comparing the expected gravitational acceleration given the baryonic matter (gbar) with the observed gravitational acceleration (gobs), using weak lensing measurements from the fourth data release of the Kilo-Degree Survey (KiDS-1000). These measurements extend the radial acceleration relation (RAR), traditionally measured using galaxy rotation curves, by 2 decades in gobs into the low-acceleration regime beyond the outskirts of the observable galaxy. We compare our RAR measurements to the predictions of two modified gravity (MG) theories: modified Newtonian dynamics and Verlinde’s emergent gravity (EG). We find that the measured relation between gobs and gbar agrees well with the MG predictions. In addition, we find a difference of at least 6σ between the RARs of early- and late-type galaxies (split by Sérsic index and u − r colour) with the same stellar mass. Current MG theories involve a gravity modification that is independent of other galaxy properties, which would be unable to explain this behaviour, although the EG theory is still limited to spherically symmetric static mass models. The difference might be explained if only the early-type galaxies have significant (Mgas ≈ M⋆) circumgalactic gaseous haloes. The observed behaviour is also expected in Λ-cold dark matter (ΛCDM) models where the galaxy-to-halo mass relation depends on the galaxy formation history. We find that MICE, a ΛCDM simulation with hybrid halo occupation distribution modelling and abundance matching, reproduces the observed RAR but significantly differs from BAHAMAS, a hydrodynamical cosmological galaxy formation simulation. Our results are sensitive to the amount of circumgalactic gas; current observational constraints indicate that the resulting corrections are likely moderate. Measurements of the lensing RAR with future cosmological surveys (such as Euclid) will be able to further distinguish between MG and ΛCDM models if systematic uncertainties in the baryonic mass distribution around galaxies are reduced.


2008 ◽  
Vol 665 (5) ◽  
pp. 325-331 ◽  
Author(s):  
Shinji Tsujikawa ◽  
Takayuki Tatekawa

2014 ◽  
Vol 440 (1) ◽  
pp. 75-88 ◽  
Author(s):  
Marco Baldi ◽  
Francisco Villaescusa-Navarro ◽  
Matteo Viel ◽  
Ewald Puchwein ◽  
Volker Springel ◽  
...  

2019 ◽  
Vol 631 ◽  
pp. A96 ◽  
Author(s):  
Stéphane Ilić ◽  
Ziad Sakr ◽  
Alain Blanchard

The Lambda cold dark matter (ΛCDM) concordance model is very successful at describing our Universe with high accuracy and only a few parameters. Despite its successes, a few tensions persist; most notably, the best-fit ΛCDM model, as derived from the Planck cosmic microwave background (CMB) data, largely overpredicts the abundance of Sunyaev–Zel’dovich (SZ) clusters when using their standard mass calibration. Whether this is the sign of an incorrect calibration or the need for new physics remains a matter of debate. In this study, we examined two simple extensions of the standard model and their ability to release the aforementioned tension: massive neutrinos and a simple modified gravity model via a non-standard growth index γ. We used both the Planck CMB power spectra and SZ cluster counts as datasets, alone and in combination with local X-ray clusters. In the case of massive neutrinos, the cluster-mass calibration (1 − b) is constrained to 0.585+0.031−0.037 (68% limits), more than 5σ away from its standard value (1 − b)∼0.8. We found little correlation between neutrino masses and cluster calibration, corroborating previous conclusions derived from X-ray clusters; massive neutrinos do not alleviate the cluster-CMB tension. With our simple γ model, we found a large correlation between the calibration and the growth index γ, but contrary to local X-ray clusters, SZ clusters are able to break the degeneracy between the two parameters thanks to their extended redshift range. The calibration (1 − b) was then constrained to 0.602+0.053−0.065, leading to an interesting constraint on γ = 0.60 ± 0.13. When both massive neutrinos and modified gravity were allowed, preferred values remained centred on standard ΛCDM values, but a calibration (1 − b)∼0.8 was allowed (though only at the 2σ level) provided ∑mν ∼ 0.34 eV and γ ∼ 0.8. We conclude that massive neutrinos do not relieve the cluster-CMB tension, and that a calibration close to the standard value (1 − b)∼0.8 would call for new physics in the gravitational sector.


2014 ◽  
Vol 90 (2) ◽  
Author(s):  
Alexandre Barreira ◽  
Baojiu Li ◽  
Carlton M. Baugh ◽  
Silvia Pascoli

Author(s):  
Ken Osato ◽  
Jia Liu ◽  
Zoltán Haiman

Abstract We study the effect of baryonic processes on weak lensing (WL) observables with a suite of mock WL maps, the κTNG, based on the cosmological hydrodynamic simulations IllustrisTNG. We quantify the baryonic effects on the WL angular power spectrum, one-point probability distribution function (PDF), and number counts of peaks and minima. We also show the redshift evolution of the effects, which is a key to distinguish the effect of baryons from fundamental physics such as dark energy, dark matter, and massive neutrinos. We find that baryonic processes reduce the small-scale power, suppress the tails of the PDF, peak and minimum counts, and change the total number of peaks and minima. We compare our results to existing semi-analytic models and hydrodynamic simulations, and discuss the source of discrepancies. The κTNG suite includes 10,000 realisations of 5 × 5 deg2 maps for 40 source redshifts up to zs = 2.6, well covering the range of interest for existing and upcoming weak lensing surveys. We also produce the κTNG-Dark suite of maps, generated based on the corresponding dark matter only IllustrisTNG simulations. Our mock maps are suitable for developing analytic models that incorporate the effect of baryons, but also particularly useful for studies that rely on mass maps, such as non-Gaussian statistics and machine learning with convolutional neural networks. The suite of mock maps is publicly available at Columbia Lensing (http://columbialensing.org).


2011 ◽  
Vol 2011 (03) ◽  
pp. 036-036 ◽  
Author(s):  
Shaun A Thomas ◽  
Stephen A Appleby ◽  
Jochen Weller

Sign in / Sign up

Export Citation Format

Share Document