scholarly journals The effect of modified gravity on weak lensing

2008 ◽  
Vol 665 (5) ◽  
pp. 325-331 ◽  
Author(s):  
Shinji Tsujikawa ◽  
Takayuki Tatekawa
2021 ◽  
Vol 650 ◽  
pp. A113
Author(s):  
Margot M. Brouwer ◽  
Kyle A. Oman ◽  
Edwin A. Valentijn ◽  
Maciej Bilicki ◽  
Catherine Heymans ◽  
...  

We present measurements of the radial gravitational acceleration around isolated galaxies, comparing the expected gravitational acceleration given the baryonic matter (gbar) with the observed gravitational acceleration (gobs), using weak lensing measurements from the fourth data release of the Kilo-Degree Survey (KiDS-1000). These measurements extend the radial acceleration relation (RAR), traditionally measured using galaxy rotation curves, by 2 decades in gobs into the low-acceleration regime beyond the outskirts of the observable galaxy. We compare our RAR measurements to the predictions of two modified gravity (MG) theories: modified Newtonian dynamics and Verlinde’s emergent gravity (EG). We find that the measured relation between gobs and gbar agrees well with the MG predictions. In addition, we find a difference of at least 6σ between the RARs of early- and late-type galaxies (split by Sérsic index and u − r colour) with the same stellar mass. Current MG theories involve a gravity modification that is independent of other galaxy properties, which would be unable to explain this behaviour, although the EG theory is still limited to spherically symmetric static mass models. The difference might be explained if only the early-type galaxies have significant (Mgas ≈ M⋆) circumgalactic gaseous haloes. The observed behaviour is also expected in Λ-cold dark matter (ΛCDM) models where the galaxy-to-halo mass relation depends on the galaxy formation history. We find that MICE, a ΛCDM simulation with hybrid halo occupation distribution modelling and abundance matching, reproduces the observed RAR but significantly differs from BAHAMAS, a hydrodynamical cosmological galaxy formation simulation. Our results are sensitive to the amount of circumgalactic gas; current observational constraints indicate that the resulting corrections are likely moderate. Measurements of the lensing RAR with future cosmological surveys (such as Euclid) will be able to further distinguish between MG and ΛCDM models if systematic uncertainties in the baryonic mass distribution around galaxies are reduced.


2011 ◽  
Vol 2011 (03) ◽  
pp. 036-036 ◽  
Author(s):  
Shaun A Thomas ◽  
Stephen A Appleby ◽  
Jochen Weller

2020 ◽  
Vol 498 (4) ◽  
pp. 5299-5316
Author(s):  
D Munshi ◽  
J D McEwen

ABSTRACT We compute the low-ℓ limit of the family of higher order spectra for projected (2D) weak lensing convergence maps. In this limit these spectra are computed to an arbitrary order using tree-level perturbative calculations. We use the flat-sky approximation and Eulerian perturbative results based on a generating function approach. We test these results for the lower order members of this family, i.e. the skew- and kurt-spectra against state-of-the-art simulated all-sky weak lensing convergence maps and find our results to be in very good agreement. We also show how these spectra can be computed in the presence of a realistic sky-mask and Gaussian noise. We generalize these results to 3D and compute the equal-time higher order spectra. These results will be valuable in analysing higher order statistics from future all-sky weak lensing surveys such as the Euclid survey at low-ℓ modes. As illustrative examples, we compute these statistics in the context of the Horndeski and beyond Horndeski theories of modified gravity. They will be especially useful in constraining theories such as the Gleyzes–Langlois–Piazza–Vernizzi (GLPV) theories and degenerate higher order scalar-tensor theories as well as the commonly used normal-branch of Dvali–Gabadadze–Porrati model, clustering quintessence models and scenarios with massive neutrinos.


2009 ◽  
Vol 395 (1) ◽  
pp. 197-209 ◽  
Author(s):  
Shaun A. Thomas ◽  
Filipe B. Abdalla ◽  
Jochen Weller

2011 ◽  
Vol 530 ◽  
pp. A68 ◽  
Author(s):  
I. Tereno ◽  
E. Semboloni ◽  
T. Schrabback

2019 ◽  
Vol 490 (4) ◽  
pp. 4907-4917 ◽  
Author(s):  
Christopher T Davies ◽  
Marius Cautun ◽  
Baojiu Li

ABSTRACT Modifications to general relativity often incorporate screening mechanisms in order to remain compatible with existing tests of gravity. The screening is less efficient in underdense regions, which suggests that cosmic voids can be a useful cosmological probe for constraining modified gravity models. In particular, weak lensing by voids has been proposed as a promising test of such theories. Usually, voids are identified from galaxy distributions, making them biased tracers of the underlying matter field. An alternative approach is to study voids identified in weak lensing maps – weak lensing voids – which have been shown to better correspond to true underdense regions. In this paper, we study the ability of weak lensing voids to detect the signatures of modified gravity. Focusing on the void abundance and weak lensing profiles, we find that both statistics are sensitive probes of gravity. These are quantified in terms of the signal-to-noise ratios (SNR) with which an LSST-like survey will be able to distinguish between different gravity models. We find that the tangential shear profiles of weak lensing voids are considerably better than galaxy voids at this, though voids have somewhat lower SNR than weak lensing peaks. The abundances of voids and peaks have, respectively, $\rm {SNR} = 50$ and 70 for a popular class of modified gravity in an LSST-like survey.


2013 ◽  
Vol 2013 (08) ◽  
pp. 029-029 ◽  
Author(s):  
Shinsuke Asaba ◽  
Chiaki Hikage ◽  
Kazuya Koyama ◽  
Gong-Bo Zhao ◽  
Alireza Hojjati ◽  
...  

2011 ◽  
Vol 84 (12) ◽  
Author(s):  
R. Ali Vanderveld ◽  
Robert R. Caldwell ◽  
Jason Rhodes

Sign in / Sign up

Export Citation Format

Share Document